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Abstract—Several preprocessing algorithms for text files are
presented which are performed prior to the compression scheme.
The overall gain of the compression rate when all the
preprocessing algorithms are combined is compared between the
BWT, PPM and LZ based compression schemes. The algorithms
need no external dictionary and are language independent. The
average overall compression gain is in the range of 3 to S percent
for the text files of the Calgary Corpus and between 2 to 9
percent for the text files of the large Canterbury Corpus.

Index Terms—algorithms, data compression, BWT, LZ, PPM,
preprocessing, text compression.

I. INTRODUCTION

TODAY the most popular schemes for lossless data
compression are the Burrows-Wheeler Compression
Algorithm (BWCA) [1], Prediction by Partial Matching
(PPM) [2] and Lempel-Ziv (LZ) [3] based compression
schemes. The first two schemes are context related, whereas
the LZ scheme is based on repetitions. Even though each of
these schemes can be used to compress text files, they do not
consider the special properties of textual data, and the
compression rate can be enhanced by using preprocessing
algorithms specialized for textual data. Text preprocessing
algorithms are reversible transformations, which are
performed before the actual compression scheme during
encoding and afterwards during decoding. Since textual data
make up a substantial part of the Internet and other
information systems, efficient compression of textual data is
of significant practical interest.

This paper presents a number of text preprocessing
algorithms, including a text recognition scheme and five
separate algorithms: capital letter conversion, EOL coding,
word replacement, phrase replacement and alphabet
reordering. The basic ideas of many of these algorithms have
already appeared in many variations. The approach presented
here is a combination of strongly improved and more
universal algorithms, which in contrast to many others need
no fixed external information like dictionaries. It is language
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independent — as long as the text is based on Latin letters.
Nevertheless, it achieves a remarkable compression gain. The
first four algorithms work with most universal compression
schemes, the last algorithm is especially designed for sort
based schemes like the BWCA.

The impact of the text preprocessing algorithms is
illustrated using the example of the 10 text files of the Calgary
Corpus — bib, bookl, book2, news, paperl, paper2, progc,
progl, progp and trans — for BWCA, PPM and LZ
compression schemes. The BWCA is represented by the
program ABC 2.4 from Abel [4], the PPM algorithm is
represented by the program PPMD from Teahan [5] and for
the LZ scheme the program GZIP from Gailly is used [6].

II. PREVIOUS WORK

The preprocessing of textual data is a subject of many
publications. In some articles, the treatment of textual data is
embedded within the compression scheme itself but could
easily be separated into two independent parts: a
preprocessing algorithm and a standard compression
algorithm, which are processed sequentially one after the
other.

Bentley et al. describe a word based compression scheme
[7], where words are replaced by an index into an MTF list.
The dictionary of the words is transmitted implicitly by
transmitting the word during its first occurrence. This scheme
can be divided into a parsing preprocessing part and a
standard MTF ranking scheme. A word based variation of the
PPM scheme is presented by Moffat [8]. He uses order-0,
order-1 and order-2 word models to achieve better
compression than the MTF scheme from Bentley et al. Similar
schemes, which differentiate between alphanumeric strings
and punctuation strings, and which also use an implicit
dictionary, are presented by Horspool and Cormack [9].
Again, these schemes can be divided into a parsing part and a
coding part using Huffman codes.

Teahan and Cleary describe several methods for enlarging
the alphabet of the textual data [10]. Besides the replacement
of common bigrams by a one symbol token, they propose
methods for encoding special forms of bigrams called digrams
(two letters representing a single sound as ea in "bread" or ng
in "sing"). The replacements are processed using a fixed set of
the frequently used bigrams in the English language, which
makes this attempt language dependent. Teahan and Cleary
[11] describe a word based compression scheme where the
word dictionary is adaptively built from the already processed



input data. This can also be achieved by a preprocessing stage
if the words are replaced by corresponding tokens. Teahan
presents a further comparison between two different word
based compression schemes in his PhD thesis [12]. The first
scheme wuses function words, which include articles,
prepositions, pronouns, numbers, conjunctions, auxiliary
verbs and certain irregular forms. The second scheme uses the
most frequently used words in the English language. Both
schemes require external dictionaries and are language
dependent.

A special case of word encoding is the star encoding
method from Kruse and Mukherjee [13]. This method replaces
words by a symbols sequence that mostly consist of
repetitions of the single symbol '*'. This requires the use of an
external dictionary that must be known by the receiver as well
as the sender. Inside the dictionary, the words are first sorted
by their length and second by their frequency in the English
language using information obtained from Horspool and
Cormack [9]. All sorted words of the same length are then
encoded by sequences "*...*" "A* ¥ , "ZFLLF
Mad KN, LR TEAK YD where the length of the
encoded sequence is equal to the length of the word being
encoded. The requirement of an external dictionary makes this
method again language dependent.

Preprocessing methods, specialized for a specific
compression scheme, are presented by Chapin and Tate [14]
and later by Chapin [15]. They describe several methods for
alphabet reordering prior to using the BWCA in order to place
letters with similar contexts close to one another. Since the
Burrows-Wheeler transformation (BWT) is a permutation of
the input symbols based on a lexicographic sorting of the
suffices, this reordering places areas of similar contexts at the
BWT output stage closer together, and these can be exploited
by the latter stages of the BWCA. The paper compares several
heuristic and computed reorderings where the heuristic
approaches always achieve a better result on text files than the
computed approaches. The average gain for BWCA using
heuristic reorderings over the normal alphabetic order was
0.4% on the text files of the Calgary Corpus. Balkenhol and
Shtarkov use a very similar heuristic alphabet reordering for
preprocessing with  BWCA [16]. A different alphabet
reordering for BWCA is used in the paper from Kruse and
Mukherjee [17]. It also describes a bigram encoding method
and a word encoding method which is based on their star
encoding.

Grabowski proposes several text preprocessing methods in
his publication [18], which focuses on improvements for
BWCA but some techniques can also be used for other
compression schemes. Besides the already mentioned
techniques like alphabet reordering, bigram-, trigram- and
quadgram replacement, Grabowski suggests three new
algorithms. The first one is capital conversion. An escape
symbol and the corresponding lower letter replace capital
letters at the beginning of a word. If the second letter of the
word is capitalized too, the replacement is omitted. This
technique increases context dependencies and similarities

between words, which can be exploited by standard
compression schemes. The second algorithm is space stuffing,
where a space symbol is placed at the beginning of each line
in order to change the context that follows the end of line
symbol (EOL) to one space instead of various symbols. The
last algorithm is EOL coding, which replaces EOL symbols by
space symbols and separately encodes the former EOL
positions, which is represented by the number of blanks since
the previous EOL symbol. These numbers are encoded either
within the symbol stream itself or in a separate data stream.
Grabowski suggests using either space stuffing or EOL coding
for preprocessing text files, but because of unstable side-
effects, he decides to omit EOL coding in his comparisons.
His preprocessing algorithms without EOL coding achieve an
average gain for BWCA of 2.64% on the 10 text files of the
Calgary Corpus. Since he uses a set of fixed bigrams, trigrams
and quadgrams, his proposal requires an external dictionary
and is language dependent.

Franceschini et al. extend the star encoding method by
using different schemes for the indices into the dictionary
[19], called Length-Preserving Transform (LPT), Reverse
Length-Preserving Transform (RLPT) and Shortened-Context
Length-Preserving Transform (SCLPT). All of these require
an external dictionary and are language dependent.
Franceschini reported for SCLPT, which achieves the best
results, a gain for BWCA of 7.1% and for PPMD+ a gain of
3.8% for the files of the Calgary Corpus (including the files
paper3, paper4, paper5 and paper6). A further improvement
of the star encoding method, presented by Awan et al. [20], is
called Length Index Preserving Transform (LIPT). LIPT
encodes a word as a string that can be interpreted as an index
into a dictionary. The string consists of three parts: a single
symbol *', a symbol between 'a' and 'z, and a sequence of
symbol from the set 'a'...'z', 'A'..."Z". The second part of the
string, the single symbol, represents the length / of the word,
where 'a' stands for length 1 and 'z' for length 26. The third
part is the encoded index inside the set of words with length /.
They are encoded as a number representation of base 52
decremented by 1, where 'a' represents 0, ..., 'z' represents 25,
'A' represents 26, ..., and 'Z' represents 51. An empty
substring represents the number 0. Therefore, a word of length
3 with index 0 is encoded as "*c", a word of length 3 with
index 1 as "*ca", a word of length 3 with index 27 as "*cA"
and so on. LIPT achieves a gain for BWCA on the Calgary
Corpus of 4.1% and of 5.6% for GZIP.

Isal and Moffat present different text preprocessing
schemes for bigrams and words [21] using internal and
external dictionaries. In their paper, tokens are used with
values above 255, so they can be used together with normal
symbols, as the compression scheme needs to handle
alphabets with more than 8 bits. For text files, the word based
schemes with internal dictionaries give the highest
compression gain. Later Isal et al. combine the word
preprocessing scheme with different global structure
transformations and entropy coding schemes [22]. Because of
the use of an internal dictionary, where each word is spelt out



the first time it occurred, the schemes of Isal and Moffat are
all language independent.

Teahan and Harper propose a switching algorithm for
combining both dynamic and static PPM models that also
involves an initial text preprocessing step [23]. In this step
that occurs prior to the encoding step, the text is essentially
marked up by additional switch symbols to indicate when the
compression algorithm should switch to another model. A
greedy search algorithm which minimizes the overall code
length of the encoded stream (of both the original symbols and
additional switch symbols) is used to determine the positions
of the markup symbols. This scheme is only relevant to
context based schemes such as PPM, and it requires a
modification of the subsequent PPM compression scheme.

III. RECOGNIZING TEXT FILES

Preprocessing algorithms are specifically designed for the
properties of textual data. Since other types of data like
pictures or numerical data have different statistical properties,
using a text preprocessing algorithm on non textual data leads
to a misinterpretation of the context and to worse compression
rates. Therefore, a simple text recognition scheme prior to the
text preprocessing step is presented, which has the task of
classifying files as text files or non-text files respectively. It is
assumed that the text files are based on Latin letters
represented by the normal ASCII character set, supplemented
if needed by some language dependent characters above
ASCII 127, like the Umlaute 'd'", '6' 'i' in German for example.

In order for a file to be categorized as a text file, it has to
fulfill two requirements:

1. The percentage frequency share of letters (A,..., Z,
a,..., z), digits (0,..., 9) and the space symbol
compared to all symbols should be greater than 66%.

2. The percentage frequency share of the space symbol
compared to letters (A,..., Z, a,..., z) and digits (0,...,
9) should be greater than 10%.

The first condition confirms that letters, digits and spaces
are adequately represented inside the file, since these symbols
dominate in normal text over punctuation symbols like ', and
non printable symbols like bell (0x07). By the second
condition is taken into account that the space symbol is a very
frequent symbol, for example as a delimiter of words.

This text recognition scheme categorizes the following 10
files of the Calgary Corpus as text files: bib, bookl, book2,
news, paperl, paper2, progc, progl, progp and trans. The
files geo, obj1, obj2 and pic are classified as non-text files.

Clearly, the assumptions on which these conditions are
taken are a great simplification because of the lack of an
official definition of a text file. This simple approach can lead
in some cases to false classifications; furthermore, languages
not based on Latin letters, like Russian and Chinese, have not
been taken into account. However, the advantage of the
approach is its simplicity and speed, and experiments show
that the method is extremely effective across a wide range of

sample text files.

IV. UNIVERSAL PREPROCESSING ALGORITHMS

A. Capital Letter and Upper Word Conversion

In order to improve context similarities, Grabowski
suggests replacing capital letters at the beginning of a word by
a capital-letter escape symbol and the corresponding lower
letter [18]. If the second letter of the word is capitalized too,
the replacement is omitted.

Table I displays the result of this technique on the text files
of the Calgary Corpus for the three investigated compression
schemes. BWCA and PPM get a small compression boost on
average, whereas the LZ based scheme is hampered. The file
trans especially shows a much worse compression rate by
this technique for all three compression schemes.

In this paper, a different technique is revealed for the first
time. In the first phase, a ternary search tree (a tree for which
every node represents a symbol and has up to three edges for:
less than, equal, or greater than [24]) is constructed containing
all words of the text with length of size 2 or more. Hereto a
word is defined as a sequence of lower or upper case letters
surrounded by non-letter symbols. In the second phase, only

TABLE |
PERCENTAGE GAIN FOR SIMPLE CAPITAL LETTER ALGORITHM
File BWC.A PPM LZ.
% gain % gain % gain

bib 0.12 -1.34 -0.20
book1 0.30 0.16 0.17
book?2 0.38 0.26 0.30
news 0.26 -0.42 -0.13
paperl 0.35 0.70 0.34
paper2 0.33 0.59 0.55
progc 0.55 0.39 0.18
progl 0.15 0.12 0.02
progp -0.36 -0.36 -0.52
trans -0.72 -1.35 -4.84
Avg. 0.14 -0.13 -0.41

words that start with a capital letter and occur with a
lowercase letter elsewhere are considered for capital letter
conversion. This phase ensures that words that always start
with a capital letter are unconverted, since this conversion
would decrease context similarities. Additionally, it is checked
if the second letter is a lowercase letter. Only if both
conditions are fulfilled, then the capital letter is converted into
a capital-letter escape symbol, followed by a space symbol
and the corresponding lowercase letter. Even though the
original symbol is now replaced by three symbols, there is a
gain on average for the text files of the Calgary Corpus, since
the capital-letter escape symbol has a unique suffix consisting
of the space character, which supports context-based



algorithms.

A further enhancement is achieved if words, consisting only
of uppercase letters, are converted into a capital-word escape
symbol followed by the word in lowercase letters. This word
conversion is processed only if the number of lowercase
letters inside the text is larger than the number of uppercase
letters. This test ensures that files, consisting mainly of upper
letters, are unchanged.

Both conversions have the goal of supporting the
compression scheme by recognizing similarities between
words with lower and upper letters, since plain compression
schemes are unable to recognize the relationship between
lowercase and uppercase letters.

The symbols for the capital-letter escape and capital-word-
escape are not fixed escape symbols but are calculated as
follows. In principle, any symbol, which has a frequency
count of zero, could be used as an escape symbol. In order to
save symbols with a zero frequency count for phrase and word
tokens, a different approach is used instead. Inside normal
text, uppercase letters rarely occur as a separate single letter
(except the article 'A' and the personal pronoun 'T'), therefore
this approach uses two uppercase letters as escape symbols.
Hereto, the two uppercase letters are determined, which occur
most rarely after a non-letter symbol. All occurrences inside
the original text, where these two letters occur after a non-
letter symbol, are replaced by two of the respective letters in
order to be able to decode the escape symbols inside the
decoder later. If for example the letters 'Q' and 'X' are chosen
for the escape symbols, all occurrences of '.Q' and X' are
replaced by '.QQ' and '.XX' respectively.

The two uppercase letters are transmitted as the first two
symbols of the transformed text. Besides saving possible
token symbols, using uppercase letters as escape symbols has
the advantage that the escape symbols are sorted closely to the
other upper letters, which plays a positive role for sort based
compression algorithms such as BWCA.

Table IT shows the impact of the improved capital letter and

TABLE II
PERCENTAGE GAIN FOR IMPROVED CAPITAL LETTER AND
UPPER WORD ALGORITHM
File BWC.A PPM LZ‘
% gain % gain % gain
bib 0.27 -0.57 -0.79
book1 0.49 0.26 0.27
book?2 0.53 0.25 0.33
news 0.44 -0.66 0.01
paperl 0.66 0.75 0.37
paper2 0.70 0.79 0.50
progc 0.79 0.70 0.78
progl 0.78 0.42 0.78
progp -0.07 -0.29 -0.35
trans 0.06 -0.60 -1.51
Avg. 0.47 0.11 0.04

upper word conversion. All compression schemes now
achieve a gain on average. The gain is greater for BWCA and
PPM than for LZ, since BWCA and PPM are able to exploit
context similarities whereas LZ schemes are based on simple
repetitions.

B. EOL Coding

The coding of End-Of-Line (EOL) symbols is used in
several archivers and described by Grabowski [18] who
attributes the idea to Taylor. The principle of EOL coding is
that EOL symbols in comparison to space symbols hamper the
context, since words are usually divided by space symbols.
Therefore, Grabowski suggests replacing all EOL symbols by
space symbols and to encode their former positions. The
positions are either transmitted within the normal symbol
stream or as a separate data stream that is encoded using a
different compression scheme.

Table IIT shows the impact of a simple EOL scheme, where
the positions of the EOL symbols are encoded in a separate
stream using the number of space symbols that occurs since
the last EOL. The stream is encoded with variable length
integer codes similar to the Elias codes [25]. The binary
lengths of the integers are encoded first with an arithmetic
coder. The bits of the integer are encoded with a binary
arithmetic coder, with the most significant bit first. The size of
the respective stream is listed in the second column of the
table and added to the size of the compressed symbol stream
for comparison. Except for file bookl, which gets a
compression gain between 1% and 2%, all files get a worse
compression rate. Obviously, this scheme gives in some cases
a noticeable gain, but needs to be enhanced before it will lead
to reliable results.

TABLE III
PERCENTAGE GAIN FOR THE SIMPLE EOL ALGORITHM
. oL BWCA PPM LZ
File stream % gain % gain % gain
size
bib 1,940 -7.28 -7.40 -5.16
book1 6,786 1.64 1.76 1.39
book2 6,806 -0.70 -0.86 -0.24
news 4,689 -2.07 -2.17 -1.31
paperl 610 -0.94 -0.86 -0.85
paper2 864 -0.41 -0.30 -0.26
progc 712 -5.88 -5.92 -4.83
progl 1,053 -7.04 -7.19 -5.86
progp 937 -8.19 -7.27 -6.92
trans 907 -4.79 -4.31 -3.73
Avg. -3.57 -3.45 -2.78

The second column contains the size of the EOL positions stream.



Four main problems can be identified:

1. Shall every EOL be encoded?

2. Shall every text file be EOL encoded?

3. What symbol shall be encoded as the EOL symbol?

4. How shall the EOL positions be encoded?

The answers to these problems are quite subtle and
represent the key to a more successful and reliable EOL
coding.

The coding of a position of an EOL symbol requires code
space. Therefore, only EOL symbols, which lead to a more
predictable context, should be replaced by space symbols and
their positions encoded. In this approach, only EOL symbols
that are surrounded by lowercase letters are considered as
valid and are replaced. In other words, only a part of all EOL
symbols inside the file are considered for replacement and the
others are ignored. If the percentage share of the valid EOL
symbols is too small, the whole file is regarded as unvalid and
will be not EOL encoded. Here a threshold of 10% valid EOL
symbols is used. The two symbols "Carriage Return" (CR)
and "Linefeed" (LF) are treated as EOL symbols together with
the combination CR/LF, which is treated as one EOL symbol.
Some files not only have a unique EOL symbol, like CR, LF
or CR/LF, but some files like trans have a set of different
EOL symbols. Therefore, the EOL symbol, which has the
highest frequency count inside the file, is regarded as the EOL
symbol that is being replaced. The combination CR/LF is
treated in a particular manner. In this case, where the
combination CR/LF is most frequent, all CR/LF combinations
are replaced foremost by a single EOL symbol, which is then
treated as the EOL symbol to replace.

The implementation of the last question — the coding of the
positions — has a very strong influence on the result. Since in
many text files the number of symbols per line is on average
quite similar, this property can be exploited with a
sophisticated encoding scheme. Hereto, the length of the
current line is compared with the average length of the last 16
lines. If the current length is greater or equal to the average
line length, then the numbers of spaces between the average
line length and the current EOL positions are counted and
encoded. If the current length is smaller, an escape symbol is
encoded as a minus sign and the numbers of spaces between
the current EOL position and the average line length is
encoded. If the current EOL is an unvalid EOL — in the sense
of the former definition — two escape symbols are encoded
and the EOL is left unchanged.

The effect of the enhanced EOL scheme can be seen in
Table IV. The share of valid EOL symbols for the files bib,
progc, progl, progp and trans is too small, and therefore
these files are omitted for EOL coding (the EOL stream size
of 1 represents a byte flag, which is transmitted in front of the
actual data, giving information if the following data is EOL
encoded or not). All other files achieve a compression boost
with the three compression schemes.

C. Token based Replacement

1) Determination of available Tokens

TABLE IV
PERCENTAGE GAIN FOR THE ENHANCED EOL ALGORITHM
size
bib 1 0.00 0.00 0.00
book1 3,882 1.82 1.81 1.16
book? 3,776 0.46 0.25 0.37
news 856 0.26 0.31 0.09
paperl 194 0.58 0.78 0.52
paper2 334 1.23 1.38 0.97
progc 1 -0.01 -0.01 -0.01
progl 1 -0.01 -0.01 -0.01
progp 1 -0.01 -0.01 -0.01
trans 1 -0.01 -0.01 -0.01
Avg. 0.43 0.45 0.31

The second column contains the size of the EOL positions stream.

Token based replacement refers to the following technique.
Given an alphabet A4, the set of letter symbols
L={a,...,z,A,...,Z,_} and the set of non-letter symbols

N = A\ L, all occurrences except the first one of a substring
X inside the input text are replaced by a token ¢ in the output
text. Two kinds of substrings are considered for replacement.
The first kind is a word. A word is a sequence of letter
symbols from L, which are surrounded in the input text by
non-letter symbols from N. The second kind of substrings are
either bigrams or trigrams, which consist of two or three letter
symbols from L in the input text respectively. Bigrams and
trigrams are normally part of a word. For ¢, a symbol is used
which has a frequency count of zero inside the text.

Before the actual replacement starts, the set of tokens is
determined. Hereto, all symbols with a frequency count of
zero and ordinal values between 0 and 31 and between 127
and 255 are identified. This token set is encoded as the
sequence 7

T = nqonoqny...
where 7 is the total number of tokens, ¢; is a token, and #; is
the number of continuous tokens that follow. The ¢; are
ordered in ascending order. For example if the tokens with
ordinal value 2, 3, 4, 5, 127, 128, 129, 150, 151, 152, 200,
201, 202, 203 have a frequency count of zero, 7 would be:

T =14,2,4,127,3,150,3,200,4 .

The sequence T is transmitted at the beginning of the text.
The first two tokens 7, and #; (in the former example 2 and 3)
are used for trigram replacement, the next two tokens #, and #;
(in the former example 4 and 5) for bigram replacement and
the rest of the tokens are used for word replacement. If there
are less than 6 tokens, the word replacement is omitted; if
there are less than 4 tokens, the phrase replacement is omitted



too.

2) Word Replacement

Word replacement is the preprocessing algorithm that gives
the most compression boost on average. The basic idea is to
replace frequently used words by tokens, which are indices
into a word dictionary. The size sp of the dictionary is given
by the number of tokens available for word replacement as
described in the last section. The token ¢, is used as a first-
occurrence escape symbol. In order to keep the approach
language independent, no fixed dictionary is used. Instead, the
dictionary is built adaptively and transmitted together with the
data stream. In the first phase, the frequencies of all words of
the file are calculated using a ternary search tree for words
with length of size 2 or more. In many languages, the stem of
a word is extended with a separate letter at the end for
declination like the nominative plural in English and the
genitive singular in German or for conjugation like the 's' for
the third person singular in English. Therefore, in the second
phase, all words W are omitted for replacement where the
shorter stem S occurs inside the text with a frequency of at
least 25% of W. In this case, S is used instead for replacement.
Furthermore, a value for each word W is calculated, which
represents the value for replacing W by a token inside the
whole file. The value vy is calculated by:

v =(Uw =D-Uy =D,

where fj is the frequency of W and [ is the length of 7. The
set of all words is then sorted descending by their respective
values and the first — most valuable — sp words inside the file,
which have a value of at least 16, are replaced by tokens in the
third phase. When a word occurs for the first time, it is
transmitted as is. After the word 7, is output, indicating that
the prior word should be added into the dictionary. During
further occurrences, the word is replaced by the token s,
where 7 is the number of words already encoded in the
adaptively growing dictionary. Since the decoder is able to
rebuild the dictionary from the transmitted data, no external
dictionary is needed and the approach stays independent from
a specific language.

3) Phrase Replacement

Besides word replacement, bigrams and trigrams are also
used for token based replacement. Hereto, the two most
frequent trigrams are determined and are encoded with the
tokens 7, and ¢, if their frequency inside the text is greater than
64. During the fist occurrence of a trigram, the trigram is
transmitted as is and the respective token is transmitted
afterwards. The most frequent bigrams are treated the same
way, encoded with the tokens 7, and ;.

Both word and phrase replacement causes a compression
of the text by assigning a single symbol to a frequent sequence
of several determined symbols. Table V shows the result of
the token based replacement for words and phrases. The result
for the file book2 shows an interesting effect: while the gain
for the LZ based compression scheme reaches its highest
value, the compression for BWCA is slightly hampered. If the

capital letter and upper word conversion are processed
together with the token based replacement, the negative result
for BWCA disappears, since the conversion supports the word
replacement by producing more words that consist of equal
lowercase letters as illustrated in Table VI.

TABLE V
PERCENTAGE GAIN FOR THE TOKEN BASED REPLACEMENT ALGORITHM
File BWC.A PPM LZ.
% gain % gain % gain

bib 0.97 2.65 3.59
bookl 0.98 1.46 5.53
book?2 -0.07 3.57 6.72
news 0.53 2.05 4.02
paperl 0.70 0.43 4.60
paper2 1.22 1.06 6.31
progc 2.17 1.28 1.27
progl 2.36 5.96 2.84
progp 2.17 3.76 4.96
trans -0.43 2.53 -1.47
Avg. 1.06 2.48 3.84

TABLE VI

PERCENTAGE GAIN FOR THE TOKEN BASED REPLACEMENT ALGORITHM IN
CONJUNCTION WITH CAPITAL LETTER AND UPPER WORD ALGORITHM

File BWC.A PPM LZ.
% gain % gain % gain
bib 1.81 2.92 3.77
book1 1.76 2.20 6.20
book?2 1.81 4.38 7.51
news 1.26 2.48 4.28
paperl 1.89 1.66 5.51
paper?2 2.30 2.25 7.17
progc 2.99 2.49 2.50
progl 3.24 6.82 3.73
progp 3.16 3.75 4.84
trans 0.01 2.78 -1.20
Avg. 2.02 3.17 4.43

V. SPECIAL TEXT PREPROCESSING ALGORITHMS

For compression schemes that are based on sorting stages
like BWCA, for example, the lexicographic order of the
alphabet during the sorting process has an impact on the
sorted output. During BWCA, the sorted data is usually
processed by a Global Structure Transformation (GST), which
transforms the local context of the different output segments
to a global context [4, 17, 26]. This global context data is
finally compressed by an Entropy Coding (EC) stage. If the
lexicographic order of the alphabet is changed in a way that
symbols with a similar context are grouped closer together,



segments with similar context properties will also be grouped
closer together. This can be exploited by the GST stage since
context changes will be smoother and less abrupt.

In this paper, a heuristic alphabet reordering is used, which
was determined by trying many hand-permutated orderings. It
is different to former approaches of grouping all vowels
together [14, 15, 16, 18]. This approach groups the vowels
"aoui" in the middle of the consonants together and the 'e' at
the end of the consonants. Furthermore, other characters like
digits and punctuation symbols are also reordered. Figure 1
contains the complete alphabet order.

The result of the alphabet reordering can be seen in Table
VIIL. The gain of 1.1% using the new alphabet order for the
BWCA is more than double as much as that reported by
Chapin and Tate [14], Kruse and Mukherjee [17], and Chapin
[15], who achieved between 0.2% to 0.5%. Since PPM and

_", tab, "@", space, O0x1B, 1f, cr,
"7, 1) [ ~&<=>{*+}[/!-""\0123456789%%" ,
"SNLMGQZBPCFWRHAOUIYXVDKTIJE",
AC
"snlmgqzbpcfwrhaouiyxvdktje",
Ox7F .. OXFF,
0x00 .. 0x08, 0x0B, 0x0C, OxOE .. Ox1lA, Ox1C .. Ox1F

Fig. 1. New alphabet order

LZ do not depend on a sorting stage, their compression rates
are practically unaffected.

VI. CONCLUSIONS

The compression rates of the popular compression
techniques, which are based on BWT, PPM or LZ schemes,
can be improved by using a text preprocessing algorithm
beforehand.

This paper puts forward a compound text preprocessing
scheme that consists of a text/non-text recognition scheme and
five different text preprocessing algorithms. The first
algorithm is capital letter and capitalized word conversion,
which converts the capital letter of a word to a lowercase
letter and converts words, which consist only of uppercase
letters, into words with lowercase letters. This transformation
helps to increase the similarities of the contexts of the words.
The second algorithm, EOL coding, replaces EOL symbols
like "carriage return" and "linefeed" in the text with space
characters and encodes the former position into a separate data
stream by a special encoding method that uses the average line
length in terms of the number of spaces. Replacing the EOL
by space symbols helps to improve the predictability of the
context, since words are usually separated by spaces. The
third algorithm replaces words by tokens. The most valuable
words, in relation to their frequency and length, are calculated
and replaced by byte tokens, except for the first occurrence.

TABLE VII The fourth algorithm replaces the most frequent two trigrams
PERCENTAGE GAIN FOR THE ALPHABET REORDERING ALGORITHM . . .

and bigrams. Both replacement algorithms result in a
File BWC.A PPM LZ. compression of the text. The last algorithm is alphabet

% gain % gain % gain . . .
D5 052 0.00 001 reordering, which supports sort based compression schemes
' ’ e like BWCA. The reordering helps to place segments with
bookl 0.61 0.00 -0.01 similar contexts closer together after the sorting. All five
book2 0.82 0.00 0.00 algorithms are processed sequentially one after the other as
news 0.67 0.00 0.01 illustrated in Figure 2 after the initial text recognition scheme.
paperl 1.37 0.00 0.02 Table VIII compares the compression rates for the text files
paper? 1.26 0.00 0.01 of the Calgary Corpus between the raw files and the text
proge 1.65 0.00 0.01 preproces.sed ﬁ.les for BWCA,thPM at;(j/ I;ZS?;hemes. The

compression gain on average is between 3% to 5%.

7
prog 1.66 0.00 0.01 Table IX displays the respective results for the text files of
progp 2.06 0.00 0.02 the large Canterbury Corpus. The compression gain here is
trans 0.39 0.00 0.02 about 2% for the BWCA and between 7% to 9% for the LZ
Avg. 1.10 0.00 0.01 and PPM scheme. One reason for the smaller boost on the
BWCA may be the fact that the BWCA has already a very
strong compression (1.379 bps), which is more difficult to
| EOL stream -
;Xt' capital
e letter. EOL
text > ) word phrase alphabet
—> recognition upper —> coding —> replacement replacement — reordering
words
[ o
textfile

Fig. 2. The complete text preprocessing scheme.



TABLE VIII

COMPRESSION RATES IN BPS AND PERCENTAGE GAIN
FOR THE TEXT FILES OF THE CALGARY CORPUS

. BWCA BWCA BWCA PPM PPM PPM Lz Lz Lz
File a b 0 s C a b 0 sC a b 0 c . C
raw preproc. % gain raw preproc. % gain raw preproc. % gain

bib 1.888 1.840 2.51 1.901 1.845 2.92 2.516 2.421 3.76
book1 2.226 2.136 4.05 2.302 2.198 4.52 3.256 3.015 7.42
book?2 1.929 1.869 3.10 2.017 1.913 5.13 2.702 2.491 7.82
news 2.400 2.347 2.20 2.408 2.338 2.88 3.072 2.938 4.37
paperl 2.381 2.286 4.00 2.341 2.280 2.59 2.791 2.630 5.76
paper2 2.331 2.230 4.34 2.317 2.226 391 2.880 2.649 8.02
progc 2.418 2.309 4.49 2.380 2.321 2.48 2.678 2.612 2.48
progl 1.658 1.585 4.41 1.739 1.621 6.82 1.806 1.739 3.75
progp 1.658 1.582 4.61 1.726 1.661 3.74 1.812 1.724 4.85
trans 1.439 1.433 0.42 1.530 1.488 2.78 1.611 1.630 -1.20
Avg. 2.033 1.962 341 2.066 1.989 3.78 2.512 2.385 4.70

“"raw" means file without preprocessing, compression rates in bps (bits per symbol).

" "preproc." means file with preprocessing, compression rates in bps (bits per symbol).

“Percentage gain between raw file and preprocessed file.

TABLE IX
COMPRESSION RATES IN BPS AND PERCENTAGE GAIN
FOR THE LARGE CANTERBURY CORPUS
. BWCA BWCA BWCA PPM PPM PPM Lz Lz LZ
File a b o . ¢ a b o . a b o . ¢
raw preproc. % gain raw preproc. % gain raw preproc. % gain

bible.txt 1.452 1.421 2.14 1.699 1.524 10.29 2.330 2.113 9.35
wor1d192.txt 1.306 1.286 1.51 1.679 1.545 7.99 2.337 2.217 5.15
Avg. 1.379 1.354 1.83 1.689 1.535 9.14 2.334 2.165 7.25

an

bn

“Percentage gain between raw file and preprocessed file.

improve than the 1.689 bps from PPM and 2.334 bps from the
LZ scheme.

Besides the pure compression gain, the independence from
a specific language and from an external dictionary makes this
universal approach very attractive for all three kinds of
compression schemes.
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