
���������	�
�����������

��������������������������������������

������������

����������������������� ��!�

"�#����
����$�

%$%&'�(�����)� *+,�(-�

*�
��.�/�������
���01
�
�#���������������

The lossless Burrows-Wheeler compression algorithm has received considerable attention over 

recent years for both its simplicity and effectiveness. It is based on a permutation of the input 

sequence − the Burrows-Wheeler transformation − which groups symbols with a similar context 

close together. In the original version, this permutation was followed by a Move-To-Front 

transformation and a final entropy coding stage. Later versions used different algorithms, placed 

after the Burrows-Wheeler transformation, since the following stages have a significant influence 

on the compression rate. This article describes different algorithms and improvements for these 

post BWT stages including a new context based approach. Results for compression rates are 

presented together with compression and decompression times on the Calgary corpus, the 

Canterbury corpus, the large Canterbury corpus and the Lukas 2D 16 bit medical image corpus. 

Keywords: compression, Burrows-Wheeler transformation, block sorting 

1. Introduction 

First, a historical overview of the Burrows-Wheeler Compression Algorithm (BWCA) is presented; 

the basic concepts of the different parts of the algorithm are explained in the next sections. 

The family of the block sorting algorithms based on the Burrows-Wheeler Transformation (BWT) 

has grown over the past few years starting with the first implementation described by Burrows and 

Wheeler in 1994 [1] and BWT based compression found acceptance in the LINUX field and as a 

new format in ZIP-files. Several authors have presented improvements to the original algorithm. 

Andersson and Nilsson published in 1994 and 1998 several papers about Radix Sort, which can be 

used as the first sorting step during the BWT [2, 3]. Fenwick described some BWT sort 

improvements including sorting long words instead of single bytes in 1995 [4]. Kurtz presented in 

1998 and 1999 several papers about BWT sorting stages with suffix trees, which needed less space 

than other suffix tree implementations and are linear in time [5, 6]. 



- 2 - 
 
Sadakane described a fast suffix array sorting scheme in 1997 and 2000 [7, 8]. In 1999, Larsson 

presented an extended sorting scheme for suffix arrays [9]. Based on already sorted suffices, 

Seward developed in 2000 two fast suffix sorting algorithms called "copy" and "cache" [10]. Itoh 

and Tanaka presented in 1999 a fast sorting algorithm called the two stage suffix sort [11]. Kao 

improved the two stage suffix sort in 2001 by a new technique which is very fast for sequences of 

repeated symbols [12]. Manzini and Ferragina published in 2002 some improved suffix array 

sorting techniques based on the results of Seward, Itoh and Tanaka [13]. Beside linear approaches 

based on suffix trees, Kärkkäinen and Sanders presented in 2003 an algorithm which sorts the array 

in linear time [14].  

Several techniques for the post BWT stages have been published as well. Besides the Move-To-

Front (MTF) improvements from Schindler in 1997 [15] and from Balkenhol and Shtarkov in 1999 

[16], an MTF replacement, called Inversion Frequencies, was introduced by Arnavut and 

Magliveras in 1997 [17, 18, 19]. Switching between different post BWT stages was examined by 

Chapin in 2000 [20]. Deorowicz presented in 2000 another MTF replacement, named Weighted 

Frequency Count [21]. An efficient post BWT stage, Incremental Frequency Count, was presented 

by Abel in 2005 [22] and more deeply with an hierarchical coding model in 2007 [23]. 

Various modeling techniques for the entropy coding at the end of the compression process were 

presented by Fenwick [4, 24, 25], Balkenhol and Shtarkov [16], Deorowicz [21] and Maniscalco 

[26, 27, 28]. 

The purpose of this paper is to provide an overview of different BWT based compression 

algorithms from a practical point of view. The focus is set on different stages subsequent to the 

BWT, with no special preprocessing for different kind of data like text preprocessing [23, 29, 30, 

31, 32, 33, 34, 35], or binary preprocessing before the BWT [36]. Several variants including a new 

context based algorithm will be presented and their basic properties, compression rates, 

compression times and decompression times compared. 

2. Basic Concepts 

2.1  Standard scheme 

A typical scheme of the Burrows-Wheeler Compression Algorithm (BWCA) is presented in Figure 

1 and consists of four stages. Each stage is a block transformation of the input buffer data and 

forwards the output buffer data to the next stage. The stages are processed sequentially from left to 

right for compression; for decompression they are processed from right to left with the respective 

backward transformations. For compression, the first stage is the BWT. The purpose of this stage is 



- 3 - 
 

to sort the data in a way that symbols with a similar context are grouped closely together. The BWT 

stage keeps the number of symbols during the transformation constant, except an additional index, 

which is created during the forward transformation and which has a value between 0 and buffer size 

- 1. The additional index is needed during the backward transformation in order to move the 

symbols back to their original order. The index as an integer can be encoded for example as a short 

byte sequence in the front of the sorted symbols. The second stage is called Global Structure 

Transformation (GST), which transforms the local context of the symbols to a global context [21, 

37]. A typical representative of a GST stage is the Move-To-Front transformation (MTF), which 

was used by Burrows and Wheeler in their original publication [1] and which was the first 

algorithm used as a GST stage in a BWCA. The MTF stage is an algorithm for the list update 

problem, which replaces the input symbols by corresponding recency ranking values [38]. Just like 

the BWT stage – taking the additional index of the BWT not into account – a GST stage does not 

alter the number of symbols. The third stage typically shrinks the number of symbols by applying a 

Run Length Encoding scheme (RLE). Different algorithms have been presented for this purpose, 

with the Zero Run Transformation (RLE0) from Wheeler found to be an efficient one [24]. The last 

stage is an Entropy Coding stage (EC), which compresses the symbols by using an adapted model. 

In order to elucidate the operation modes of the different stages, Figure 2(a) - 2(e) displays the 

transformed data of the input string "abracadabraabracadabra" in hexadecimal ASCII code. The 

input data of the BWT stage – except the additional index which is not shown for simplicity – is 

shown in Figure 2(a). As can be seen in Figure 2(b) the output data of the BWT stage contains 

many sequences of repeating symbols and has a local structure, i.e. symbols with a similar context 

form small fragments. The GST stage − in this example an MTF scheme − transforms the local 

structure of the BWT output to a global structure by using a ranking scheme according to the last 

recently used symbols and produces sequences of continuous zeros which are displayed in Figure 

2(c). The RLE0 stage from Wheeler in Figure 2(d) removes the zero runs and the final EC stage 

produces a bit output in Figure 2(e) by using an arithmetic coding scheme. 

 
 
 
 
 
 
 
 
 

Figure 1: Typical scheme for the Burrows-Wheeler compression algorithm 

 

Input  
data 

Output 
data 

BWT 
 

GST 
 
RLE 

 
EC 



- 4 - 
 

The BWT sorts the input array using the following context. By reversing the symbol order of the 

input array, it is possible to use the preceeding context instead of the following context similar to 

Prediction by Partial Matching (PPM) [39]. Balkenhol and Shtarkov reversed the symbol order for 

binary files before the BWT [16]. They defined binary files as files with an alphabet size of 256. 

Fenwick mentioned, that even for binary files, context reversing does not automatically lead to 

better compression ratios [40]. For some type of file, e.g. for image files with 16 bit pixels, which 

store values with the most significant byte first (big endian) as the radiographs from the Lukas 2D 

16 bit medical image corpus [41], reversing the input order offers noticeable improvement as to be 

seen in the results section. It depends on the respective type of file, if context reversing achieves 

advantages; this implementation reverses binary files. Not all binary files have an alphabet size of 

256, e.g. 8-bit image files with less than 256 colours. Therefore, all files which have an alphabet 

size higher than 230 are treated as binary files and are rearranged in reverse order before the BWT 

in the presented implementations if not otherwise stated. 

2.2  Burrows-Wheeler Transformation 

As the first stage of the compression algorithm, the Burrows-Wheeler Transformation (BWT) is the 

heart of the algorithm [1]. The purpose of this stage is the reordering of the input data depending on 

its context. The reordering produces many runs of equal symbols inside the output data of the BWT 

stage. In order to move the reordered symbols back into their original positions, a backward 

transformation exists, which reproduces exactly the input sequence. The backward transformation is 

a simple linear algorithm which is much faster than the forward transformation. Further information 

and variations of the BWT are explicated in 2008 by Adjeroh, Bell and Mukherjee [42]. 

The function of the forward and backward transformation will be explained on the example of the 

input string ABRAKADABRA with a length of 11 symbols. The counting of the index starts with 0. 

The preceeding context of a symbol s inside a string is defined as the context build by symbols left 

from s, which is the standard context used in compression  algorithms. The following context of a 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Transformed HEX data of "abracadabraabracadabra" by different stages 

�
���������	
��� �������������������������������������������������������������������
�
�����������
��� ��������������������������������������������������������������������
�
�����������
��� �������������������������������������������������������������������
�
������������
�������������������������������������������������������
�
����� ����
��� �����!����"!����##�"��������$"��"����



- 5 - 
 

symbol s is defined as the context produced by symbols right from s, which is the context used in 

the BWT because of the alphabetical sorting. 

For the forward transformation, the input string with the length n is written n-1 times under the 

original string, producing a list with n lines. Each line – starting with the second line – is then 

rotated i symbols to the right, with i being the index of that line. Symbols which leave the last 

column are moved back into the first column. Table 1 shows the result for the input string 

ABRAKADABRA. Next, all lines are sorted in alphabetical order. During this process, two columns 

have a special meaning: the first and the last column. The first column – called column F (first) – 

contains all symbols of the input string sorted in alphabetical order, which places symbols with a 

similar following context directly behind each other. The last column– called column L (last) – has 

some remarkable properties even without being completely sorted. Because of the cyclic sorting, L 

is the predecessor column of F. Therefore, many symbols with a similar following context are 

placed nearby which produces many runs of equal symbols in column L. Compared to the original 

string, L is much easier to compress for most entropy coders. The result for the input 

ABRAKADABRA can be seen in Table 2. The output of the BWT are column L and index i of the 

original input string inside the list after the sorting. In this example, the output consists of the string 

RDAKRAAAABB and the index 2. 

The entire forward transformation can be described briefly as: 

1. Create all possible rotations of the input string resulting in a list of n rotated strings. 

2. Sort the rotated strings in alphabetical order. 

3. Output the last column L of the list and the index i of the input string inside the list. 

Table 1 
Producing the n rotations of ABRAKADABRA. 

Index F          L 

0 A B R A K A D A B R A 

1 A A B R A K A D A B R 

2 R A A B R A K A D A B 

3 B R A A B R A K A D A 

4 A B R A A B R A K A D 

5 D A B R A A B R A K A 

6 A D A B R A A B R A K 

7 K A D A B R A A B R A 

8 A K A D A B R A A B R 

9 R A K A D A B R A A B 

10 B R A K A D A B R A A 
�
�



- 6 - 
 

Common implementations of the BWT do not calculate n rotated strings of the input string, which 

would be impractical for larger input sizes, but use different data structures like a suffix array. 

Instead of n rotated strings the suffix array uses only the original string and the n positions of the 

start of the rotations [7, 8, 11, 12], leading to a much lower memory consumption. 

Since no backward algorithm exists for a standard alphabetical sort of symbols, the question arises 

how the backward transformation of the BWT is able to reconstruct the original order of the 

symbols. One of the most remarkable properties of the BWT is the fact that not only the original 

order of the symbols can be reconstructed by column L and index i, but that the backward 

transformation is even much faster and simpler than the forward transformation. 

Since the forward transformation is a special sort of the input symbols, column L, which is the 

output of the forward transformation and the input of the backward transformation, contains exactly 

the same symbols than column F; they differ only in their respective positions. Therefore, column F 

can be reproduced by a simple alphabetical sort of the symbols of column L. Columns L and F are 

then placed behind each other and build a simple table as shown in Table 3. The index i from the 

output of the forward transformation is the starting point of the backward transformation. All 

symbols of column F are output using a special order of the lines. The first symbol to output is the 

symbol at column F in line i, in this example the symbol A, which is the third A from the top in 

column F. The next line is the line which contains the third A from the top in column L. Here, line 6 

contains the third A and the symbol of column F in line 6, a B, is output as the second symbol. This 

symbol is the second B in column L, leading to line 10, which contains the second B in column F. 

The third output is the symbol of column F in line 10, an R. The process continues until it reaches 

the starting line i, where it stops. 

�

Table 2 
Sorting of the n rotations of ABRAKADABRA. 

Index F          L 

0 A A B R A K A D A B R 

1 A B R A A B R A K A D 

2 A B R A K A D A B R A 

3 A D A B R A A B R A K 

4 A K A D A B R A A B R 

5 B R A A B R A K A D A 

6 B R A K A D A B R A A 

7 D A B R A A B R A K A 

8 K A D A B R A A B R A 

9 R A A B R A K A D A B 

10 R A K A D A B R A A B 
�



- 7 - 
 

The entire backward algorithm can be described by 5 steps: 

1. Create column F by sorting the symbols of column L. 

2. Start with line i. 

3. Output the symbol at column F of the current line. 

4. Move to the line which has the same position at the L column within the set of the last symbol 

than the position of the last symbol inside the set of the last symbol at the F column, e.g. if the last 

symbol was an C, and the C was the fifth C in column F, move to the line with the fifth C in column 

L. 

Table 3 
Reproducing the F column from RDAKRAAAABB. 

Index L F 

0 R A 

1 D A 

2 A A 

3 K A 

4 R A 

5 A B 

6 A B 

7 A D 

8 A K 

9 B R 

10 B R 
�

�
�

Table 4 
Calculation of the output symbols from RDAKRAAAABB. 

Index L F 

0 R A 

1 D A 

2 A A 

3 K A 

4 R A 

5 A B 

6 A B 

7 A D 

8 A K 

9 B R 

10 B R 
�

index i 

index i 



- 8 - 
 
5. Repeat 3 and 4 until line i is reached. 

2.3  Global Structure Transformation 

The Global Structure Transformation (GST) is the second stage within the basic Burrows-Wheeler 

Compression Algorithm (BWCA). The output of the BWT contains many symbol fragments, which 

have the same right context and a local probability distribution. It is typical for the output of the 

BWT that the symbol fragments change suddenly, switching to a new set of symbols with a 

different probability distribution. This local structure is transformed into a global structure by the 

GST stage, which is better to compress for the EC stage. A global structure, which is a structure 

with a stable probability distribution for the whole file, can be achieved for example by a recency 

ranking scheme like the Move-To-Front stage (MTF) [1]. The MTF stage produces an index 

sequence with many 0s. Another possibility is a distance measurement scheme like Inversion 

Frequencies (IF) [17, 18, 19]. Theses schemes will be explained in detail in the sections about the 

post BWT stages. 

2.4  Run Length Encoding 

Run Length Encoding (RLE) is a simple and popular data compression scheme. The sequence of 

length l of a repeated symbol s is replaced by a shorter sequence, usually containing one or more 

symbols of s, a length information and sometimes an escape symbol c. RLE stages differ from each 

other mainly in three points: the threshold t, the marking of the start of a run, and the coding of the 

length information l. The threshold t defines the minimum run length l for a run to be encoded. If l 

is smaller than t, the run keeps unchanged, and if l is greater or equal to t, the run is replaced. The 

start of a run can be indicated by a threshold run or an escape symbol c. If a threshold run is used, 

the start is characterized by a small sequence of s, which has a length of t. If an escape symbol c 

indicates the start of a run, s is normally put behind c in order to characterize the run symbol. The 

escape symbol c must not be an element of the alphabet or occurrences of c have to be encoded 

unambiguously. The length information l can be coded in different ways. Usually, l is put directly 

behind the threshold run or behind s. Note, that c and l disturb the context of s inside the output 

sequence. 

In the past, different RLE schemes for BWCAs have been presented by Wheeler, Fenwick and 

Maniscalo [24, 43, 44]. The main function of the RLE is to support the probability estimation of the 

next stage. Long runs of a symbol s tend to overestimate the global symbol probability of s for 

fragments, where s occurs only occasionally. The result is that within these disjoined fragments, the 

probability value for s is too high which leads to lower compression. Balkenhol and Shtarkov name 



- 9 - 
 
this phenomenon “the pressure of runs” [16]. The RLE stage helps to decrease this pressure. In 

order to improve the probability estimation of the EC stage, most BWCA schemes place the RLE 

stage directly in front of the EC stage. 

Maniscalco describes in 2000 and 2001 algorithms which use a variable length code and divide the 

length information into two parts: an exponent part and a binary representation part [43, 44]. The 

exponent part, called the size of the variable length code in Maniscalco's paper, reflects the 

logarithm of l. The binary representation part, called the value of the variable length code by 

Maniscalco, contains the bits of the binary representation of l and can be transmitted independently 

from the exponent part. 

Another example of an RLE stage for BWT based compressors is the Zero Run Transformation 

(RLE0) from Wheeler [24, 25]. Wheeler suggested coding only the runs of the 0 symbols and no 

runs of other symbols, since 0 is the symbol with the most runs. In this case, an offset of 1 is added 

to all symbols except 0 [24]. All occurrences of 0 in the input array of the RLE0 stage are encoded. 

The run length of each zero run is incremented by one and all bits of its binary representation except 

the most significant bit – which is always 1 – are stored by the symbols 0 and 1. 

Some authors suggested an RLE stage before the BWT stage for speed optimization, but such a 

stage deteriorates the compression rate in general [21]. Since there are sorting algorithms which sort 

runs of symbols practically in linear time [11, 12, 10, 13] or even sort the whole array in linear time 

like the algorithm of Kärkkäinen and Sanders [14], there is no reason to use such a stage before the 

BWT stage for speed reasons. Besides speed, Chapin mentioned that an RLE stage before the BWT 

can help to achieve better compression rates in some cases by processing a larger amount of bytes at 

one go with the fixed block size of the BWT [45]. 

In 2005, Abel presented a scheme, which uses an RLE stage directly behind the BWT stage – going 

back to an idea of Gringeler [46] – and mentioned two reasons for the new position [22]. First, 

encoding of the runs lowers the pressure of runs inside the GST stage, which leads to a more 

compressible GST output stream. Second, the compression process achieves a higher speed, 

because the length of the RLE output is usually smaller than the RLE input length and an RLE stage 

is faster than a GST stage. The scheme is shown in Figure 3 and used for all following BWCA 

 
 
 
 
 
 
 
 
 

Figure 3: Improved BWCA with RLE stage in front of GST 

 

Input  
data 

Output 
data 

BWT 
 

RLE 
 
GST 

 
EC 

        RLE data stream 



- 10 - 
 
versions if not otherwise stated. The output of the RLE stage consists of two streams, the main 

stream – including the input symbols without the runs – going to the GST stage as well as the RLE 

data stream going directly to the EC stage. The RLE data stream contains the run length 

information, which bypasses the GST stage in order not to disturb the symbol context of the 

following GST stage. At the EC stage, the RLE data stream is encoded separately from the GST 

output into the same output file [47, 23]. 

2.5  Entropy Coding 

The type of encoding of the GST output inside the Entropy Coding (EC) stage has a strong 

influence on the compression rate. Different types of entropy coders can be used to compress the 

GST output and RLE data stream. The most important ones are Huffman and arithmetic coders. 

Huffman coders offer better compression speed and arithmetic coders offer better compression 

rates. The implementation presented here is based on arithmetic coding. Arithmetic coding assigns 

to each symbol of the alphabet a probability based on the former occurrences of that symbol. At the 

start of the encoding, the interval [0, 1) is divided into sub-intervals which equal the probabilities of 

the alphabet symbols. The larger the probability, the larger the sub-interval. For each symbol to 

encode, the sub-interval of the respective symbol is taken and again divided into sub-intervals 

proportional to the probabilities of the alphabet symbols. The output is a rational number, which is 

inside the sub-interval of the last symbol encoded. A good introduction can be found in the book of 

Nelson and Gailly [48].  

Table 5 
Examples of index codings. 

Index 1. Level 2. Level 3. Level 

0 ‘0’ - - 

1 ‘1’ ’0’ ’0’ - - 

2 ‘1’ ’0’ ’1’ - - 

3 ‘1’ ’1’ 0 0 

4 ‘1’ ’1’ 0 1 

5 ‘1’ ’1’ 1 0 

6 ‘1’ ’1’ 1 1 

7 ‘1’ ’1’ 1 2 

8 ‘1’ ’1’ 1 3 

9 ‘1’ ’1’ 2 0 

100 ‘1’ ’1’ 5 35 

128 ‘1’ ’1’ 5 63 

129 ‘1’ ’1’ 6 0 

255 ‘1’ ’1’ 6 126 
�



- 11 - 
 

It is not sufficient to compress the GST output just by a simple arithmetic coder with a common 

unstructured order-n context. Even after the use of an RLE stage before or after the GST stage, the 

symbols 0 and 1 are still by far the most common symbols on average. As discussed by Fenwick 

[24, 25] and later by Abel [23], a hierarchical coding model offers good compression results for 

such skew distributions.  

Similar to the model of Fenwick, this paper uses a hierarchical coding model for GST stages based 

on a ranking scheme, consisting of three hierarchical levels as shown in Figure 4 and [23]. The first 

and second level as well as each group in the third level use independent arithmetic coders with 

their own contexts of symbol frequencies. The first level handles the symbols 0, 1 and 2, which are 

the most frequent symbols. All symbols greater than 2 are handled by the second and third level of 

the model, with an escape symbol at the first level. Level two and three build a structured coding 

model. Level two acts as a selector and divides the symbols in seven disjoint subsets: {3, 4}, {5, ..., 

8}, {9, ..., 16}, {17, ..., 32}, {33, ..., 64}, {65, ..., 128} and {129, ..., 255}. Level three handles the 

offset of the current symbol in each subset [24, 23]. For example, the symbol 8 would be encoded in 

the first level as 11binary, in the second level as 1 and in the third level as 3 as shown in Table 5. 

For GST stages based on a distance measurement, as well as for the RLE data stream, a different 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Coding model for recency ranking schemes 

1. level 
 

0 : 0 
1 : 100 
2 : 101 
3 : 11  

 
2. level 

 

0..6 

 
3. level 
1. group 

 

0..1 
 

 
3. level 
7. group 

 

0..126 
 
 

… 



- 12 - 
 

coding model is used because the length of the alphabet is greater than 255 and because the context 

is different from the context of indices. The coding model consists of two main parts as pictured in 

Figure 5 and is similar to the Elias gamma code [49]. All parts are encoded by independent 

arithmetic coders. The first part is the exponent part and compresses the binary logarithm l of each 

distance, which represents the number of bits of the binary representation of the distance. The 

exponent l is saved in unary coding as a sequence of l 0s and a trailing 1 as a terminator symbol, 

e.g. an exponent of 6 is saved as 0000001. The second part is the mantissa part and compresses the 

binary representation of each distance. For each bit position starting with the second most 

significant position – the first bit position is always 1 – a binary coder with its own context is used. 

Since the exponents are stored alongside the binary representations, it is possible to decide how 

many bits are used for each distance and to decode the distance later unambiguously without a 

terminator symbol between the mantissa data. 

3. Post BWT Stages 

3.1  Definitions 

For the description of the algorithms, the following notation will be used. Let A be an ordered set, 

called alphabet, with size |A|. Let X = x0 x1 x2…xn-1 denote a sequence with length n and xi ∈ A with 

10 −≤≤ ni . The first index of a sequence is 0. Each stage has an input sequence Xin and an output 

sequence Xout as well as a corresponding input alphabet Ain and an output alphabet Aout. A stage 

processes the symbols of Xin and calculates the corresponding symbols of Xout. After finishing one 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Coding model for distance schemes 

 
 

exponent model 
1, 01, 001, 

0001.. 

 
 

mantissa model 
 

 
binary coder for 
bit position 20 

0..1 
 

 
binary coder for 

bit position 0 
0..1 

… 



- 13 - 
 
stage, Xout of this stage will be used as Xin of the following stage. The maximal size for Xin is called 

the blocksize bn. For most stages, Ain and Aout will have a bit width of 8 bits resulting in |Ain| = |Aout| 

= 256. Stages using a distance measurement, and all stages in the algorithm following that stage, 

will have a bit width of log2(bn). In this case a bit width of 32 will be assumed in order to handle all 

values as blocksizes are smaller than 4 GB. Furthermore, the binary representation sequence of a 

symbol a is denoted as BR(a), for example BR(4) = '100' and BR(7) = '111'. 

In the following sections, several representatives of GST stages are discussed and compared. The 

recency ranking and distance measurement schemes can be used as the GST stage in Figure 3, the 

context based schemes includes the GST and EC stages. 

3.2  Move-To-Front 

3.2.1  Basic properties 

The basic GST stage is the Move-To-Front stage (MTF), a recency ranking scheme used in many 

BWCA implementations. The MTF stage transforms the input symbol sequence into an index 

sequence. For each input symbol of Xin, an output index is written to Xout. The smaller the index, the 

closer is the last occurrence of the corresponding symbol. In order to calculate the index values, a 

list of the alphabet symbols is used, which is ordered by the last occurrences of the alphabet 

symbols. At the beginning, the list is sorted in ascending alphabet order. Each time a symbol of Xin, 

is processed, the corresponding alphabet symbol is located inside the list, the current index of that 

symbol is written to Xout and the symbol is moved to position 0 in the list. Such a ranking scheme 

transforms a run of repeated symbols with a run length of m into a sequence of 0s with length m - 1. 

The sequence of 0s has a length of m - 1, as the first 0 occurs one position later in the output 

sequence. Since the BWCA sorts the input symbols according to their context, the output of the 

BWCA contains many symbol runs. All these runs are transformed into runs of 0s by the MTF stage 

independent of the former symbol value, i.e. the local contexts are transformed into a global 

context. For an entropy coding stage, it is more efficient to compress many runs of the same symbol 

than to compress many runs of different symbols. 

One problem of the MTF stage is that it moves each symbol directly to the front of the list, no 

matter how seldom it has occurred before. If a symbol appears only rarely, it removes other 

symbols, which might be more frequent, from the front of the list to higher ranks, which are more 

expensive to encode. An advantage of the MTF stage is its low complexity, which gives the stage a 

high throughput. 

3.2.2  Improvements 

Several enhancements try to improve the properties of the MTF stage like the M1 and M2 version 



- 14 - 
 
of Schindler [15], the MTF-1 algorithm from Balkenhol, Kurtz and Shtarkov [50] and the MTF-2 

algorithm from Balkenhol and Shtarkov [16]. The M1 and M2 versions use flags to achieve an 

output sequence, which increase the number of rank 0 symbols at the cost of rank 1 symbols, i.e. 

they produce more 0s [15]. The MTF-1 moves only symbols from the second position to the front of 

the list, whereas symbols with higher positions are moved to the second position. MTF-2 differs 

from MTF-1 in that symbols from the second position are moved to the front of the list only if the 

last ranking value was not zero, i.e. if the same symbol occurred again. Fenwick used a sticky MTF 

stage [51] in order to improve the compression rate. All these MTF variations try to make the MTF 

stage slower to adept when processing new appearing symbols. 

Another improvement to the standard BWCA with an MTF stage is to place the RLE scheme 

directly in front of the MTF stage as shown in Figure 3 instead of in front of the EC stage. For the 

MTF based BWCA used in the results section, a standard MTF scheme is used with an RLE stage 

in front of it. 

3.3  Inversion Frequencies 

3.3.1  Basic properties 

Several MTF replacements have been unveiled since the birth of the BWCA in 1994. Some of these 

improvements are based on a distance measurement like the Distance Coding (DC) algorithm from 

Binder [52, 53] and the algorithm from Arnavut and Magliveras [17]. which they named Inversion 

Frequencies (IF).  In 2000, Arnavut compared the MTF stage with the IF stage [18]. The IF stage 

offered better compression than the MTF stage for almost all files. In 2004, several IF schemes have 

been compared against MTF like schemes by Arnavut [19]. Particularly for large image and DNA 

files, the IF schemes achieved better compression rates than the recency ranking schemes. 

An theoretical analysis of the IF algorithm was presented by Ferragina, Giancarlo and Manzini in 

2006 at the ICALP Conference [54]. The IF algorithm is not a recency ranking scheme like MTF 

but is based on distances between the occurrences of the same symbols. It produces for each symbol 

a ∈ Ain a sequence Sa. For each alphabet symbol a, the input sequence Xin is scanned and if the 

current element of Xin is equal to a, the number of symbols greater than a between the current 

position and the last position of a is output. In order to reproduce Xin from the set of Sa, either the 

frequencies of the alphabet symbols or a terminator symbol behind each Sa is needed in addition. 

One advantage of the IF algorithm is the fact that the partial sequence of the last symbol z of the 

alphabet, called Sz, consists only of the symbol 0. Therefore, Sz is not needed in order to reproduce 

the original sequence and the length of Xout gets smaller than the length of Xin. Xout of IF is different 

from Xout of MTF in many aspects. Xout of the MTF stage contains many zero runs, which represent 



- 15 - 
 

runs of equal symbols, and these runs are more or less equally distributed over the whole sequence 

as pictured in Figure 6. Xout of the IF stage consists of several sequences Sa, one for each a ∈ Ain 

except for the last symbol z. Sa of higher symbols have typically smaller values than Sa of lower 

symbols, since the number of symbols, which are greater than the scanned symbol, is decreasing. Sa 

for the last symbols of Ain have usually many long runs of zeros. In order to represent this behavior, 

Figure 6 compares the fraction of the zeros of the file ���%� over the file position for both the 

MTF stage output and for the IF stage output. For a better comparison, Sz is included in Xout of IF. 

As can be seen, the average fraction of zeros in the output of IF is rising towards the end of the file 

until it reaches 100% at the end. In the output of MTF, the average fraction of zeros fluctuates 

around 60%. 

3.3.2  Improvements 

For each sequence Sa, only symbols which are greater than a are counted. Hence, if symbols with a 

high probability are processed first, the partial sequences of the following symbols, with a lower 

frequency distribution, have smaller values. On the other hand, the partial sequences for symbols 

with a high frequency distribution are longer than the partial sequences for symbols with a lower 

frequency distribution. In order to point out the influence of the frequency distribution, Ain of the IF 

stage is sorted in ascending frequency order as well as in decreasing frequency order. Table 6 

denotes the compression rates for the original alphabet and for both sorted alphabets. In most cases, 

the ascending frequency alphabet permutation produces better compression rates than the original 

alphabet. 

   

 
 
 

Figure 6: Fraction of zeros of book1 for (a) MTF output and (b) IF output 



- 16 - 
 

While most files achieve a better compression rate with an ascending frequency alphabet, some files 

have better results with a descending frequency alphabet. Only ���%� achieves the best result with 

the original alphabet, but the result is very close to one of the ascending frequency alphabet. In 

order to find the optimal sorting direction for each file, some characteristics of the frequency 

distribution of Ain can be used. For each symbol a of Ain, let fa be the number of occurrences of a 

within Xin, i.e. the symbol distribution. Let Favg denote the average frequency count of Xin with 

length n by 

in
avg A

n
F =  . (1) 

Further, G is defined as the set of symbols for which fa is greater to 2 Favg by 

{ }avga FfaG 2| >=  . (2) 

Then S describes the percentage share of symbols a of the alphabet Ain, for which fa is greater to 2 

Favg by 

||
100

inA

G
S =  . (3) 

Table 6: Compression rates in bps for IF stage with an original alphabet,  
a permuted alphabet sorted by ascending frequencies and  

a permuted alphabet sorted by descending frequencies. 
Best compression rates are printed in bold font. 

 

File Original 
Alphabet 

Asc. Frequ. 
Alphabet 

Desc. Frequ. 
Alphabet 

bib 1.926 1.919 1.936 

book1 2.230 2.231 2.242 

book2 1.941 1.933 1.948 

geo 4.196 4.243 4.161 

news 2.420 2.405 2.433 

obj1 3.880 3.892 3.793 

obj2 2.495 2.481 2.487 

paper1 2.436 2.417 2.449 

paper2 2.350 2.340 2.358 

pic 0.709 0.709 0.706 

progc 2.482 2.473 2.498 

progl 1.716 1.703 1.723 

progp 1.730 1.719 1.737 

trans 1.519 1.506 1.544 

Avg. 2.288 2.284 2.287 

�



- 17 - 
 

Table 7 reveals S for each file of the Calgary Corpus. The values of S for the files &��, ��'�, 

��'� and 
�� are the lowest ones in the table. All of them except ��'� achieve the best 

compression rates with a descending frequency sort order. As a heuristic approach in the presented 

implementation, the alphabet inside the IF stage is permuted depending on the symbol distribution. 

The IF stage calculates the frequency distribution of the symbols together with the corresponding 

value of S at first, and performs afterwards a permutation of Ain. If S is greater than or equal to 10, 

the alphabet is sorted in ascending frequency order, otherwise in decreasing frequency order. 

Another improvement for IF based BWCAs is a special RLE stage in front of the IF stage. The RLE 

stage calculates for each run of length n two parts: the exponent part and the mantissa part, similar 

to the EC model of Figure 5. The exponent part consists of a run of the same symbol with length 

log2(n-1), i.e. the exponential part of the original run length. This run is usually much shorter – 

especially for longer runs – and is written into Xout. The binary representation BR(n-1) as the 

mantissa part is written out as a bit sequence without any terminator symbol and is the RLE data 

stream shown in Figure 3. The RLE data stream bypasses the GST stage and is encoded 

independently from Xout in the EC stage. 

Table 7: Percentage share S of symbols for which fa > 2 Favg . 
 

File S 

bib 13.41 

book1 15.85 

book2 15.46 

geo   5.47 

news 15.15 

obj1 10.55 

obj2   9.38 

paper1 14.58 

paper2 16.30 

pic 11.32 

progc 13.98 

progl 18.18 

progp 14.44 

trans 17.17 

Avg. 13.66 

�



- 18 - 
 

3.4  Weighted Frequency Count 

3.4.1  Basic properties 

The Weighted Frequency Count algorithm (WFC) was presented by Deorowicz in 2002 [53]. As a 

representative of a ranking scheme, it is closer to MTF than to IF. It replaces the input symbol x 

with a corresponding ranking value y(x). The difference between WFC and MTF is the function, 

which calculates y(x). Inside the MTF algorithm, y(x) is the index of the current input symbol x 

within a list L of alphabet symbols. Upon each request of x, the current index y(x) is output and x is 

moved to the front of L. Since a symbol is moved straight to the front of L without taking the former 

frequency distribution of this symbol into account, the MTF stage might push more frequent 

symbols aside by less frequently used symbols leading to sub optimal compression rates. The WFC 

stage calculates y(x) by a function, which takes into account the symbol frequencies and the 

distance of the last occurrences of x inside a sliding window of size tmax [53]. Hereto, each position 

inside the sliding window is assigned a weight. The weights of closer distances are higher than the 

weights of distances more far away. For each alphabet symbol, the weights of its occurrences inside 

the window are summed up into a corresponding counter. The counter list of the alphabet symbols 

is sorted in descending order, i.e. the largest counter is at index position 0. The weighting and the 

sorting have to be recalculated for each symbol processed. This way, more frequently used symbols 

get a lower index value than less frequently used symbols, which supports the following EC 

probability estimation. Table 8 presents the average ranking values rx of the MTF and WFC stage 

for the files of the Calgary Corpus. The MTF and WFC stage are both performed with an RLE stage 

processed beforehand. In all cases, the average ranking values of the WFC stage are smaller than 

the corresponding values of the MTF stage leading to better compression rates. The main drawback 

of the WFC stage is the high time consumption as described at the results section. 

3.4.2  Improvements 

The WFC implementation of Deorowicz gets the best compression rate with 2.249 bps for the 

Calgary Corpus by the weight function w6q, which uses 5 logarithmic quantized levels [53]. All 

symbols within a level get the same weight. For the implementation of his algorithm, a wide set of 

different weight functions based on logarithmic levels was examined by Deorowicz. Since the 

compression rate depends on several parameters beside the weight function and the number of 

logarithmic levels, like the kind of RLE algorithm and the model of the EC stage, it is not easy to 

predict which weight function and number of levels will lead generally to the best compression 

results. The WFC approach described in this paper is used in the ABC compression program [47, 

55] and uses a finer graduation by using more levels, which leads to improved results but needs 

more time to calculate. In the present implementation, the best compression rate is achieved at 12 



- 19 - 
 

logarithmic levels instead of 5. For the size of the sliding window tmax, the same value as in [53] is 

used: 

2048=maxt  .  (4) 

The individual weights of the weight function are of central significance for the compression rate. 

Since the structure and symbol distribution varies from file to file, a weight function with fixed 

weights independent from the file structure will not lead to optimal compression rates for all files. 

For some files, a function with stronger weights for symbols of the immediate past rather than for 

older symbols is best suited. For other files, a weight function, which weights older symbols almost 

the same as more recent symbols, offers better results. Therefore, the present implementation does 

not use fixed weights, but calculates the weights depending on the symbol distribution. 

Hereto the same parameter S is used as before in the IF section. S describes the percentage share of 

symbols a of the alphabet Ain, for which the frequency count fa of a inside Xin is greater to 2 Favg, 

defined in equations (1) to (3). Further, f(l) is defined as an integer function with parameters p0, p1 

and S: 

Table 8: Average ranking values rx for the MTF and WFC stage. 
 

File MTF 
Average rx 

WFC 
Average rx 

bib   5.66   5.42 

book1   3.86   3.51 

book2   4.39   4.07 

geo 49.61 44.76 

news   6.82   6.24 

obj1 46.32 43.66 

obj2 18.38 17.59 

paper1   5.86   5.57 

paper2   4.85   4.54 

pic   8.21   7.08 

progc   7.21   6.88 

progl   5.02   4.78 

progp   5.64   5.45 

trans   6.15   5.91 

Avg. 12.71 11.82 

�



- 20 - 
 

�
�
�
�

�

��
�
�

�

�

≥
⋅+

⋅−

=

=

=

2
)(

)1(

12

02

)(

2
1

0,,

14

17

,,

10

10

l
Slp

plf

l

l

lf

Spp

Spp  . (5) 

The distance from the current position inside the sliding window is described by t, starting with 0 as 

the next symbol to the left from the current position. Then, the weight function )(,, 10
tw Spp for the 

present implementation is defined as: 

�
�
�
�
�

�

�
�
�
�
�

�

�

≥

−≤≤

−≤≤

−≤≤

−≤≤

=

=

20480

122)11(

...

122)3(

122)2(

122)1(

0)0(

)(

1110
,,

32
,,

21
,,

10
,,

,,

,,

10

10

10

10

10

10

t

tf

tf

tf

tf

tf

tw

Spp

Spp

Spp

Spp

Spp

Spp  . (6) 

Table 9 displays the compression rates for different values of p0 and p1. As to be seen, there is no 

Table 9: Compression rates in bps for different )(,, 10
tw Spp . 

Best compression rates are printed in bold font. 
 

File p0=2400 
p1=4000 

p0=2600 
p1=4200 

p0=2800 
p1=4400 

p0=2400 
p1=4400 

p0=2800 
p1=4000 

p0=2500 
p1=4300 

bib 1.879 1.882 1.885 1.876 1.897 1.877 

book1 2.251 2.249 2.250 2.256 2.255 2.252 

book2 1.932 1.931 1.933 1.935 1.940 1.932 

geo 4.114 4.105 4.099 4.134 4.086 4.121 

news 2.384 2.380 2.378 2.391 2.378 2.386 

obj1 3.675 3.676 3.675 3.681 3.681 3.676 

obj2 2.389 2.394 2.401 2.386 2.422 2.388 

paper1 2.374 2.377 2.381 2.373 2.395 2.373 

paper2 2.326 2.326 2.326 2.331 2.332 2.327 

pic 0.708 0.706 0.705 0.711 0.703 0.708 

progc 2.411 2.413 2.416 2.413 2.427 2.412 

progl 1.657 1.655 1.654 1.659 1.655 1.657 

progp 1.653 1.654 1.656 1.651 1.666 1.652 

trans 1.431 1.430 1.430 1.432 1.430 1.432 

Avg. 2.227 2.227 2.228 2.231 2.233 2.228 

�



- 21 - 
 
best combination of p0 and p1 for all files, because the results differ from file to file. Therefore, the 

parameters p0 and p1 were chosen empirically [55], whereas the value of S is determined by the 

symbol distribution of the respective file. The best overall compression rate is achieved by the 

following values: 

26000 =p  , (7) 

42001 =p  . (8) 

Even though this choice leads to the best overall compression rate, many files obtain better results 

with different settings, e.g. the file &��. The EC model used for the WFC based BWCA is the EC 

model of Figure 4 for ranking schemes described in the Entropy Coding section. 

3.5  Incremental Frequency Count 

3.5.1  Basic properties 

The WFC stage offers strong compression rates, but it has a high cost of computation, because the 

weighting of the symbols within the sliding window and the sorting of the list has to be recalculated 

for each symbol processed. At the Data Compression conference 2005, a new scheme was presented 

by Abel which tries to achieve compression rates as good as the WFC stage but with a much lower 

complexity [22, 23]. The main idea is to use counters for symbols within a sliding window of the 

past like the WFC stage, but to update only one counter for each symbol processed. This way, only 

one counter needs to be resorted inside the list, which makes the stage much faster than the WFC 

stage. In order to weight common and close symbols stronger than rare and distant symbols, the 

counters can be increased or decreased; on average they are increased. Therefore, the stage is 

named "Incremental Frequency Count" (IFC) [22]. The counters are rescaled frequently in order to 

prevent overruns. 

In front of the IFC stage, an RLE scheme is used which replaces all symbol runs with length l by a 

run of the same symbol with a length of 2 [23]. The original run length l is sent to the RLE data 

stream and bypasses the IFC stage as shown in Figure 3. The coding model is the same as the model 

for distance measurement and shown in Figure 5 [23].  

The IFC stage consists of a loop, which processes all input symbols. The loop is divided into 5 

parts. For each alphabet symbol, a counter is used. All counters are sorted in a list in descending 

order, i.e. the counter with the highest value is placed at index position 0. At the beginning, all 

counters are reset to 0 and ordered in ascending alphabet order. The first part of the algorithm reads 

the next symbol of the input stream and outputs the current index of the corresponding counter. The 

second part calculates the difference between two index averages. An index average is the average 



- 22 - 
 
value of the last indices inside a sliding window of size window_size. The average avgi at position i 

inside the input stream with the current index indexi is calculated by: 

sizewindow

indexsizewindowavg
avg ii

i _

))1_((
: 1 +−⋅= −  . (9) 

In the approach presented here, a value of 8 is used for window_size. Larger values make the stage 

adapt slower, whereas smaller values make the stage adapt faster to context changes. The third part 

of the IFC calculates the increment of the counter values. In order to obtain an output sequence with 

a low index average, the increment has to be chosen very carefully. It is not sufficient to increment 

the respective counter by a constant, linear or exponential value. Instead, the increment is chosen 

depending on statistical properties of the recent indices. First, the difference between the last value 

avgi–1 and the current value avgi is calculated: 

1: −−= iii avgavgdif  . (10) 

In order to ensure that small differences are treated accordingly but bigger differences are not 

overweighted, difi is limited by a fixed maximum dm: 

)sign(),min(: iii difdmdifdifl ⋅=  . (11) 

The limitation has a similar effect as in the sticky MTF stage of Fenwick [51], as it lowers the 

influence of large index differences, which occur during context changes. Here, a value of 16 is 

used for dm. Finally, the increment inci is calculated in a way that it decreases when a context starts 

to change and that it increases when a context becomes stable. This way, frequent symbols in a 

stable context are weighted more strongly than new symbols of a changing context. 

)
64

(: 1
1

ii
ii

diflinc
incinc

⋅−= −
−  . (12) 

Since an RLE stage is in front of the IFC stage, the run length of every run has been cut to 2 inside 

the IFC stage. In order to emphasize the weight of runs, inci is increased by 50% if the current 

symbol equals the last symbol. Finally, the counter of the current symbol is increased by inci. The 

fourth part of the IFC stage is concerned with rescaling. If the counter of the current symbol 

exceeds 256, all counters and inci are halved. At the fifth and last part of the IFC stage, the counter 

list is sorted in descending order. Only one counter has changed since the last symbol was 

processed and needs to be moved inside the list to the proper position. If the counter has a value 

equal to other counters in the list, it is moved to the smallest index of these counters. Sorting one 

counter is much faster than the sorting of the whole list at the WFC stage [23]. 

3.5.2  Improvements 

Because of the RLE stage of Figure 3 in front of the IFC, a zero in the IFC output stream occurs 



- 23 - 
 
only separately and is always followed by a non zero symbol. This property can be exploited by an 

appropriate EC model, which switches to a different context after a zero has occurred. This context 

switching improves the compression rate. 

3.6  The M03 algorithm 

3.6.1  Basic properties 

In 2003 Michael Maniscalco developed a new post BWT stage based on context properties of the 

BWT called M03 [28]. The algorithm was presented in 2004 at the comp.compression group [26] 

by a rough draft, which described some basics of the new algorithm [27]. An implementation of 

M03 with source code is available from Atsushi Komiya [56]. In this paper a complete description 

of the algorithm is published for the first time. The main idea of M03 is to divide the BWT output 

data into several context substrings iteratively until each substring contains only one kind of 

symbol. These intervals determine the BWT output data completely. The M03 stage is not a normal 

GST stage, because the output has not a global structure but still many local properties. Therefore, 

the M03 stage includes the entropy coding stage in order to take the utmost advantage of these 

properties. 

A simple example using the string ABRAKADABRA will be used to elucidate the modus operandi of 

M03. The columns F and L of the string ABRAKADABRA are listed in Table 10. Column L together 

with the BWT index 2 represent the BWT output of the input string ABRAKADABRA. The output of 

the M03 encoder is written below in bold letters. 

�

Table 10 
Column F and L of ABRAKADABRA. 

Index F L 

0 A R 

1 A D 

2 A A 

3 A K 

4 A R 

5 B A 

6 B A 

7 D A 

8 K A 

9 R B 

10 R B 
�



- 24 - 
 

M03 uses an iterative process by dividing column L into several sequences. During each iteration, 

every sequence of the former iteration is divided into smaller subsequences. The number of 

subsequences for each sequence is given by the number of different symbols inside the respective 

interval at column L for that sequence. The length of each subsequence is determined by the 

frequency count of the respective symbol inside that interval. If a subsequence contains only one 

kind of symbol, it is completely determined and is not divided any more. 

At the beginning, M03 transmits the BWT index and the number of substrings of the first iteration. 

The first iteration of M03 divides the complete interval of column L. The number of substrings is 

given by the number of different symbols at column L. In the present example the interval contains 

five different symbols: A, B, D, K and R. These symbols are transmitted. For each of these symbols 

a subsequence is created. The length of each subsequence is determined by the frequency of the 

respective symbol at column L. These frequencies are transmitted in lexicographical order of the 

symbols. 

Up to now, the output of M03 consists of the following data: 

- 2         (BWT index) 

- 5         (number of substrings of the first iteration) 

- A, B, D, K, R   (symbols of substrings of the first iteration) 

- 5, 2, 1, 1, 2    (frequency counts of the symbols of the first iteration) 

 

During the decoding process, the decoder builds a model from the already transmitted data. After 

the first iteration, the model of the decoder in column 1 is equal to column F as depicted in Table 

�

Table 11 
Decoder model after the first iteration of M03 

Index 1 

0 A 

1 A 

-> 2 A 

3 A 

4 A 

5 B 

6 B 

7 D 

8 K 

9 R 

10 R 
�



- 25 - 
 

11.  

In the second iteration of M03, the five subsequences of the first iteration are further divided. For 

each symbol, the frequency count at column L inside every subsequence is output. The first 

subsequence has a length of 5 and reaches from index 0 to index 4. At column L, the symbol A has a 

frequency count of 1 inside this interval. The second subsequence has a length of 2 and reaches 

from index 5 to index 6. The frequency count of symbol A is 2 inside this interval. The third 

subsequence has a length of 1 and reaches from index 7 to index 7 with a frequency count of 1 for 

symbol A. The fourth subsequence has a length of 1 and reaches from index 8 to index 8 with a 

frequency count of 1 for symbol A. Finally, the fifth and last subsequence has a length of 2 reaching 

from index 9 to index 10 with a frequency count of 0 for symbol A. Accordingly, the frequency 

counts of the other four symbols are calculated for all subsequences. 

The output of the second iteration of M03 is determined by the frequency counts of the symbols in 

lexicographical order:  

- 1, 2, 1, 1, 0    (frequency counts of symbol A of second iteration) 

- 0, 0, 0, 0, 2    (frequency counts of symbol B of second iteration) 

- 1, 0, 0, 0, 0    (frequency counts of symbol D of second iteration) 

- 1, 0, 0, 0, 0    (frequency counts of symbol K of second iteration) 

- 2, 0, 0, 0, 0    (frequency counts of symbol R of second iteration) 

 

After transmitting these frequency counts, the decoder is able to construct the model presented in 

�

Table 12 
Decoder model after the second iteration of M03 

(symbols at the final position are printed in bold) 

Index 1 2 

0 A A 

1 A D 

-> 2 A K 

3 A R 

4 A R 

5 B A 

6 B A 

7 D A 

8 K A 

9 R B 

10 R B 
�

 



- 26 - 
 

column 2 of Table 12. Note that the symbols of subsequence 2 until subsequence 5 from index 5 to 

index 10 contain only one kind of symbol and therefore are completely determined. These symbols 

found their final destination inside column L. The symbols of the first subsequence from index 0 to 

index 4 are not completely determined and need to be further sorted. 

The third iteration of M03 transmits the frequency counts for the symbols, which are not located at 

their final position, i.e. the symbols of the first subsequence. The first subsequence consists of four 

different symbols, therefore four new subsequences are created. The first, second and third of the 

new subsequences each contain one symbol, the fourth and last of the new subsequences contains 

two symbols. 

The output of the third iteration of M03 transmits the frequency counts of the symbols in 

lexicographical order:  

- 0, 0, 1, 0     (frequency counts of symbol A of third iteration) 

- 0, 1, 0, 0     (frequency counts of symbol D of third iteration) 

- 0, 0, 0, 1     (frequency counts of symbol K of third iteration) 

- 1, 0, 0, 1     (frequency counts of symbol R of third iteration) 

 

The decoder builds the model presented in column 3 of Table 13. Since the first three of the new 

subsequences each contain only one symbol, they are completely determined. The fourth of the new 

subsequences contains two symbols and need to be further sorted. Note that the order of the two 

symbols could be KR as well as RK.  

�

Table 13 
Decoder model after the third iteration of M03 

(symbols at the final position are printed in bold) 

Index 1 2 3 

0 A A R 

1 A D D 

-> 2 A K A 

3 A R K 

4 A R R 

5 B A A 

6 B A A 

7 D A A 

8 K A A 

9 R B B 

10 R B B 
�

 



- 27 - 
 
The fourth iteration of M03 transmits the frequency counts for subsequence between index 3 and 

index 4 in lexicographical order:  

- 1, 0       (frequency counts of symbol K of third iteration) 

- 0, 1       (frequency counts of symbol R of third iteration) 

 

After the fourth iteration of M03 the complete column L is determined as listed in Table 10. 

Note that no RLE stage is used behind the BWT stage in order to keep the full context of the BWT 

output unchanged. 

3.6.2  Improvements 

The basic M03 scheme described before, can be improved in several ways by cutting of data, which 

is already determined and therefore redundant.  

At each iteration, the total number of symbols inside each subsequence is known beforehand to the 

encoder as well to the decoder. Therefore, after the sum of the transmitted frequencies reaches the  

total number of symbols inside that subsequence, no more information needs to be transmitted, 

which makes the trailing zeros at the sequence of frequency counts unnecessary. 

For example, the original output of the second iteration consisting of 

- 1, 2, 1, 1, 0    (frequency counts of symbol A of second iteration) 

- 0, 0, 0, 0, 2    (frequency counts of symbol B of second iteration) 

- 1, 0, 0, 0, 0    (frequency counts of symbol D of second iteration) 

- 1, 0, 0, 0, 0    (frequency counts of symbol K of second iteration) 

- 2, 0, 0, 0, 0    (frequency counts of symbol R of second iteration) 

can be reduced to  

- 1, 2, 1, 1     (frequency counts of symbol A of second iteration) 

- 0, 0, 0, 0, 2    (frequency counts of symbol B of second iteration) 

- 1        (frequency counts of symbol D of second iteration) 

- 1        (frequency counts of symbol K of second iteration) 

- 2        (frequency counts of symbol R of second iteration) 

without any loss of information. 

Furthermore, the output of the frequency counts can be compressed by an arithmetic coder. For 

each frequency count to output, the maximum of that frequency count is known beforehand and 

decreases along the output sequence. Adjusting the length of the intervals inside the model of the 

arithmetic coder for the possible numbers to encode leads to shorter output sequences. 

For example, the frequency counts of symbol A of the second iteration consists of the sequence: 

- 1, 2, 1, 1     (frequency counts of symbol A of second iteration) 



- 28 - 
 
leading to the following possible output ranges: 

- 1 (possible 0, 1, 2, 3, 4, 5), 2 (possible 0, 1, 2, 3, 4), 1 (possible 0, 1, 2,), 1 (possible 0, 1). 

3.7  Other post BWT Stages 

Beside the aforementioned schemes, there have been more Global Structure Transformation (GST) 

stages published. One scheme which is close to the IF stage described above is the Distance Coding 

(DC) algorithm from Binder [52, 53]. The DC algorithm is based on the Interval Encoding scheme 

from Elias [49]. For each symbol of the input sequence, the DC algorithm outputs the distance to 

the next occurrence of the same symbol. If the symbol does not occur again, a zero is output. Binder 

proposed three improvements to the basic algorithm [52]. If the length of the input sequence is 

transmitted too, the last sequence of ending zeros is redundant. Furthermore, for calculating the 

distance to the next occurrence of the same symbol, only unknown symbols have to be counted. The 

last improvement is that if the last symbol is equal to the current symbol, nothing has to be output 

and DC proceeds to the next symbol. The main difference to the Interval Encoding of Elias is that 

DC does not count known symbols and skips repeated symbols. Further analysis, theoretical 

properties and efficiency of the MTF, DC and IF stages are studied in 2007 by Gagie and Mancini 

[57], who present improved versions of the three stages, which are locally optimal on low-entropy 

strings. 

Another approach for post BWT stages is the direct coding of the BWT output. Balkenhol and 

Shtarkov described an approach in 1999, which handles the BWT output as a concatenation of 

uniform fragments, i.e. the symbol distribution is changing in discrete intervals and not 

continuously [16]. A uniform fragment is a symbol sequence with a constant probability distribution 

of the symbols [16]. 

A switching scheme between different post BWT stages using the snake algorithm was developed 

by Chapin in 2000 [20]. Different post BWT stages were paired. The best result was achieved with 

the Best x of 2x – 1 algorithm and a variant of a sticky MTF algorithm [20]. 

Wirth and Moffat discussed in 2001 direct symbol encoding similar to PPM techniques instead of 

GST schemes [58, 59]. They used a hierarchical model similar to the one from Balkenhol and 

Shtarkov [16]. Also, Ferragina, Giancarlo and Manzini, used in 2006 an RLE stage together with an 

EC stage based on an order-zero arithmetic coder without any GST stage, called RleAc, and 

received strong results [60]. 

A post BWT compression scheme based on wavelet trees was introduced 2004 by Foschini, 

Grossiy, Guptaz and Vitter [61]. They used a wavelet tree in conjunction with RLE and gamma 

encoding instead of an arithmetic coder and proposed the compression format WZIP. Further 



- 29 - 
 
theoretical analysis of wavelet trees in BWT compression is provided by Ferragina, Giancarlo and 

Manzini in 2006 [54], who improved the asymptotic performance by presenting the so called 

generalized wavelet trees. 

A context based approach, which uses the properties of the BWT output in order to calculate 

information of the original context of the BWT input string, was presented by Deorowicz in 2005 

and called context exhumation. By transmitting the frequency of the alphabet symbols beside the 

normal BWT output, the algorithm is able to calculate context information of the original BWT 

input string during the encoding and decoding of the BWT output string similar to M03 [62]. 

More details of post BWT stages are discussed by Adjeroh, Bell and Mukherjee in 2008 [42]. 

4. Results 

4.1  Compression Rates 

For the comparison of compression rates, the following algorithms are itemized: 

�� GZIP93-V1.2.4 with option -9 for highest compression − from Jean-loup Gailly and Mark 

Adler, based on LZ77 [63], 

�� BW94 − from Michael Burrows and David Wheeler, based on BWT [1], 

�� F96 − from Peter Fenwick, based on BWT [24], 

�� BS99 − from Bernhard Balkenhol and Yuri Shtarkov, based on BWT [16], 

�� D02 − from Sebastian Deorowicz, based on BWT [53], 

�� MTF06 − from Jürgen Abel, described in section Move-To-Front, 

�� IF06 − from Jürgen Abel, described in section Inversion Frequencies, 

�� WFC06 − from Jürgen Abel, described in section Weighted Frequency Count, 

�� IFC06 − from Jürgen Abel, described in section Incremental Frequency Count, 

�� M03C − from Atsushi Komiya [56, 64], described in section M03. 

 

The corresponding files are derived from four different file collections, all available at 

http://www.data-compression.info/Corpora/. The first three collections, the Calgary Corpus [65], 

the Canterbury Corpus and the large Canterbury Corpus [66] contain different file types and are the 

most popular file sets for lossless compression benchmarks. The last file collection, the Lukas 2D 

16 Bit Medical Image Corpus [41], is a set of large two dimensional 16 bit radiographs in TIF 

format and represents the impact of different post BWT stages in the imaging field. Medical image 

compression is an important field of lossless data compression. Files of the Lukas 2D 16 Bit 

Medical Image Corpus have typical sizes around 5 MB. Compression rates are presented in bits per 



- 30 - 
 
symbol (bps) for all algorithms. 

For all files but the large files of the Lukas Corpus, the M03 implementation achieves the best 

compression rates, followed by WFC06 and IFC06. For larger files, especially for the large medical 

image files of the Lukas Corpus, IF06 achieves in most cases the best results, followed by WFC06 

und IFC06. On average M03, WFC06, IFC06 and IF06 attain the strongest results, but there is one 

exception worth mentioning. The file %�		��()*+,, which is called �*�+ by Fenwick [51], 

obtains with M03 by far the best result, which is double as good as the results of WFC06, IFC06 

and IF06. It seems that the context based method with recursive intervals of M03 offers a better 

accommodation than the ranking schemes with indices. 

It is interesting to note, that the superiority of the M03 implementation becomes smaller with larger 

files. Maybe the bit streams to encode inside the entropy coding stage, e.g. the different order-n bits 

of a data stream could be arranged in separated order-n groups so that more context information 

could be exploited. The context information between the bit streams are small compared to the 

context information of the symbols, but for larger files their influence rises. 

The last 5 columns of Table 17 present the results for the Lukas Corpus if the BWT input data is not 

reversed for binary files as described in section Basic Concepts. For all BWCA schemes and all 

files, the results are worse than with context reversing. The radiographs are image files with 16 bit 

pixels. Their values are stored with the most significant byte first (big endian). Using the preceeding 

context inside the BWT achieves about 5% better results on average for this type of file. 

4.2  Compression and Decompression Times 

Running time results are calculated as the average over ten runs measured in seconds on a 2.13 GHz 

Pentium M with 2 GB RAM running under WINDOWS XP. All I/O times including loading and 

linking of the programs are included. Time variations among different runs were negligible. 

In about 90% of all cases, the GZIP93 algorithm achieves the highest compression speed.  For the 

last 10%, GZIP is close behind MTF06, IFC06 and IF06 with two exceptions. The files 

%�		��()*+, and �)��+� are compressed three times faster by MTF06, IF06 and IFC06 than 

by GZIP93. Both files contain many repeating strings, which are handled faster by a sorting scheme 

like BWCA than by a dictionary scheme like LZ77. 

For decompression, GZIP is always the fastest algorithm, on average about three times as fast as 

MTF06. IFC06, which achieves a better compression rate than MTF06, is about 10% slower than 

MTF06. IF06 is about 10% slower on average than IFC06. M03, which obtains in most cases the 

best compression rates, is up to ten times slower than the other BWT based implementations. 



- 31 - 
 

 

 

 

 

 

Table 14: Compression rates in bps for the Calgary Corpus. 
Best compression rates are printed in bold font 

 

File GZIP93 BW94 F96 BS99 D02 MTF06 IF06 WFC06 IFC06 M03C 

bib 2.516 2.02 1.95 1.91 1.896 1.912 1.919 1.882 1.887 1.829 

book1 3.256 2.48 2.39 2.27 2.274 2.320 2.231 2.249 2.257 2.199 

book2 2.702 2.10 2.04 1.96 1.958 1.981 1.933 1.931 1.941 1.881 

geo 5.355 4.73 4.50 4.16 4.152 4.236 4.161 4.105 4.098 4.165 

news 3.072 2.56 2.50 2.42 2.409 2.449 2.405 2.380 2.406 2.321 

obj1 3.839 3.88 3.87 3.73 3.695 3.765 3.892 3.676 3.712 3.710 

obj2 2.628 2.53 2.46 2.45 2.414 2.423 2.487 2.394 2.403 2.291 

paper1 2.792 2.52 2.46 2.41 2.403 2.414 2.417 2.377 2.386 2.335 

paper2 2.880 2.50 2.41 2.36 2.347 2.373 2.340 2.326 2.336 2.276 

pic 0.816 0.79 0.77 0.72 0.717 0.748 0.709 0.706 0.722 0.712 

progc 2.679 2.54 2.49 2.45 2.431 2.454 2.473 2.413 2.429 2.348 

progl 1.807 1.75 1.72 1.68 1.670 1.683 1.703 1.655 1.666 1.582 

progp 1.812 1.74 1.70 1.68 1.672 1.665 1.719 1.654 1.662 1.576 

trans 1.611 1.52 1.50 1.46 1.452 1.446 1.506 1.430 1.441 1.377 

Avg. 2.697 2.40 2.34 2.26 2.249 2.276 2.278 2.227 2.239 2.186 

�

Table 15: Compression rates in bps for the Canterbury Corpus. 
Best compression rates are printed in bold font 

 

File GZIP93 MTF06 IF06 WFC06 IFC06 M03C 

alice29.txt 2.849 2.192 2.148 2.149 2.152 2.093 

asyoulik.txt 3.118 2.462 2.404 2.409 2.411 2.372 

cp.html 2.594 2.400 2.436 2.353 2.372 2.304 

fields.c 2.249 2.062 2.173 2.060 2.067 2.001 

grammar.lsp 2.670 2.509 2.672 2.498 2.503 2.464 

kennedy.xls 1.579 0.620 1.034 0.816 0.978 0.444 

lcet10.txt 2.704 1.940 1.892 1.893 1.900 1.841 

plrabn12.txt 3.229 2.336 2.253 2.272 2.275 2.220 

ptt5 0.816 0.748 0.709 0.706 0.722 0.712 

sum 2.672 2.563 2.683 2.503 2.521 2.451 

xargs.1 3.320 3.096 3.187 3.062 3.098 3.075 

Avg. 2.527 2.084 2.145 2.066 2.091 1.998 

�



- 32 - 
 

 

 

 

Table 16: Compression rates in bps for the large Canterbury Corpus. 
Best compression rates are printed in bold font 

 

File GZIP93 MTF06 IF06 WFC06 IFC06 M03C 

bible.txt 2.330 1.508 1.453 1.463 1.471 1.423 

E.coli 2.244 1.989 1.964 1.954 1.973 2.017 

world192.txt 2.337 1.333 1.309 1.298 1.309 1.259 

Avg. 2.304 1.610 1.575 1.572 1.584 1.566 

�

Table 17 Compression rates in bps for the Lukas 2D 16 Bit Medical Image Corpus. 
The last 5 columns contain the results for a BWT with no context reversing (following context). 

Best compression rates are printed in bold font 
 

File GZIP93 MTF06 IF06 WFC06 IFC06 M03C MTF06 
flw.cnt. 

IF06 
flw.cnt. 

WFC06 
flw.cnt. 

IFC06 
flw.cnt. 

M03C 
flw.cnt. 

lukas_2d_16_breast_0 2.146 1.232 1.170 1.200 1.190 1.185 1.253 1.211 1.220 1.219 1.211 

lukas_2d_16_breast_1 2.483 1.404 1.336 1.376 1.358 1.351 1.428 1.387 1.394 1.390 1.389 

lukas_2d_16_foot_0 2.865 1.392 1.349 1.371 1.356 1.351 1.412 1.389 1.406 1.383 1.373 

lukas_2d_16_foot_1 3.850 1.869 1.823 1.830 1.824 1.832 1.981 1.957 2.031 1.945 1.902 

lukas_2d_16_hand_0 3.313 1.723 1.653 1.647 1.664 1.677 1.806 1.777 1.777 1.762 1.721 

lukas_2d_16_hand_1 3.273 1.629 1.566 1.557 1.573 1.584 1.717 1.698 1.693 1.676 1.630 

lukas_2d_16_head_0 2.221 1.124 1.083 1.091 1.092 1.093 1.134 1.110 1.110 1.108 1.113 

lukas_2d_16_head_1 2.659 1.358 1.311 1.317 1.319 1.319 1.375 1.344 1.344 1.344 1.343 

lukas_2d_16_knee_0 3.170 1.513 1.462 1.459 1.469 1.473 1.585 1.556 1.604 1.545 1.515 

lukas_2d_16_knee_1 3.370 1.628 1.573 1.582 1.579 1.589 1.700 1.670 1.728 1.659 1.629 

lukas_2d_16_leg_0 2.967 1.593 1.547 1.551 1.557 1.551 1.662 1.620 1.646 1.609 1.608 

lukas_2d_16_leg_1 3.606 1.943 1.889 1.894 1.901 1.895 2.021 1.975 2.033 1.963 1.973 

lukas_2d_16_pelvis_0 4.642 2.755 2.624 2.643 2.676 2.666 2.746 2.641 2.643 2.675 2.679 

lukas_2d_16_pelvis_1 4.424 2.497 2.386 2.390 2.427 2.410 2.563 2.475 2.482 2.488 2.481 

lukas_2d_16_sinus_0 3.589 1.708 1.668 1.681 1.663 1.679 1.829 1.816 1.865 1.800 1.751 

lukas_2d_16_sinus_1 3.641 1.760 1.718 1.720 1.714 1.728 1.882 1.868 1.907 1.851 1.808 

lukas_2d_16_spine_0 3.922 2.444 2.334 2.399 2.380 2.370 2.506 2.431 2.459 2.436 2.451 

lukas_2d_16_spine_1 3.899 2.484 2.365 2.372 2.407 2.385 2.514 2.424 2.421 2.434 2.438 

lukas_2d_16_thorax_0 4.344 2.384 2.264 2.324 2.314 2.300 2.429 2.339 2.353 2.360 2.373 

lukas_2d_16_thorax_1 4.020 2.198 2.107 2.110 2.142 2.133 2.248 2.190 2.209 2.194 2.205 

Avg. 3.420 1.832 1.761 1.776 1.780 1.779 1.890 1.844 1.866 1.842 1.830 

�



- 33 - 
 

Table 18: Compression and decompression times in seconds for the Calgary Corpus. 
Fastest times are printed in bold font 

 

File 
comp. 
GZIP 

93 

comp. 
MTF 

06 

comp. 
IF 
06 

comp. 
WFC 

06 

comp. 
IFC 
06 

comp. 
M03C 

decp. 
GZIP 

93 

decp. 
MTF 

06 

decp. 
IF 
06 

decp. 
WFC 

06 

decp. 
IFC 
06 

decp. 
M03C 

bib 0.02 0.06 0.07 0.10 0.07 0.20 0.02 0.05 0.05 0.08 0.05 0.12 

book1 0.22 0.25 0.29 0.52 0.29 1.88 0.08 0.22 0.28 0.47 0.25 1.25 

book2 0.14 0.21 0.24 0.39 0.23 1.41 0.06 0.15 0.20 0.33 0.17 1.03 

geo 0.09 0.11 0.11 0.40 0.11 0.27 0.02 0.08 0.08 0.37 0.08 0.14 

news 0.08 0.17 0.19 0.34 0.20 0.83 0.03 0.11 0.14 0.27 0.13 0.50 

obj1 0.01 0.06 0.06 0.11 0.06 0.06 0.01 0.03 0.03 0.08 0.03 0.03 

obj2 0.08 0.13 0.16 0.32 0.14 0.53 0.02 0.08 0.13 0.29 0.10 0.31 

paper1 0.02 0.08 0.09 0.11 0.09 0.10 0.01 0.05 0.06 0.06 0.05 0.06 

paper2 0.02 0.09 0.09 0.13 0.09 0.16 0.01 0.05 0.06 0.08 0.06 0.10 

pic 0.20 0.13 0.14 0.19 0.13 5.28 0.02 0.09 0.11 0.16 0.09 0.99 

progc 0.01 0.08 0.08 0.09 0.08 0.08 0.01 0.05 0.05 0.06 0.05 0.05 

progl 0.02 0.09 0.09 0.11 0.09 0.14 0.01 0.05 0.05 0.07 0.05 0.08 

progp 0.02 0.08 0.08 0.09 0.08 0.11 0.01 0.05 0.05 0.06 0.05 0.07 

trans 0.02 0.09 0.09 0.11 0.09 0.19 0.01 0.05 0.06 0.08 0.05 0.11 

Sum 0.95 1.63 1.78 3.01 1.75 11.24 0.32 1.11 1.35 2.46 1.21 4.84 

�

 

 

 

 

 

 

Table 19: Compression and decompression times in seconds for the Canterbury Corpus. 
Fastest times are printed in bold font 

 

File 
comp. 
GZIP 

93 

comp. 
MTF 

06 

comp. 
IF 
06 

comp. 
WFC 

06 

comp. 
IFC 
06 

comp. 
M03 

decp. 
GZIP 

93 

decp. 
MTF 

06 

decp. 
IF 
06 

decp. 
WFC 

06 

decp. 
IFC 
06 

decp. 
M03C 

alice29.txt 0.03 0.08 0.09 0.13 0.09 0.30 0.02 0.05 0.06 0.11 0.06 0.17 

asyoulik.txt 0.03 0.08 0.08 0.13 0.08 0.25 0.02 0.05 0.06 0.09 0.06 0.14 

cp.html 0.01 0.06 0.06 0.08 0.06 0.05 0.01 0.03 0.03 0.05 0.03 0.03 

fields.c 0.01 0.08 0.08 0.08 0.08 0.02 0.01 0.03 0.03 0.03 0.03 0.02 

grammar.lsp 0.01 0.08 0.08 0.08 0.08 0.01 0.01 0.03 0.03 0.03 0.03 0.01 

kennedy.xls 1.06 0.35 0.33 2.98 0.38 2.03 0.08 0.25 0.27 2.87 0.28 0.89 

lcet10.txt 0.09 0.17 0.19 0.30 0.19 0.94 0.04 0.11 0.14 0.23 0.13 0.70 

plrabn12.txt 0.16 0.20 0.23 0.37 0.23 1.10 0.05 0.14 0.19 0.31 0.17 0.66 

ptt5 0.20 0.13 0.14 0.19 0.13 5.28 0.02 0.09 0.11 0.16 0.09 1.00 

sum 0.02 0.06 0.06 0.11 0.07 0.08 0.01 0.05 0.06 0.09 0.05 0.05 

xargs.1 0.01 0.08 0.08 0.08 0.08 0.01 0.01 0.04 0.05 0.05 0.04 0.01 

Sum 1.63 1.37 1.42 4.53 1.47 10.07 0.28 0.87 1.03 4.02 0.97 3.68 

�



- 34 - 
 
 

 

 

Table 21: Compression and decompression times in seconds for the Lukas 2D 16 Bit Medical Image Corpus. 
Fastest times are printed in bold font. 

 

File 
comp. 
GZIP 

93 

comp. 
MTF 

06 

comp. 
IF 
06 

comp. 
WFC 

06 

comp. 
IFC 
06 

comp. 
M03C 

decp. 
GZIP 

93 

decp. 
MTF 

06 

decp. 
IF 
06 

decp. 
WFC 

06 

decp. 
IFC 
06 

decp. 
M03C 

lukas_2d_16_breast_0 1.65 1.48 1.47 3.47 1.56 23.36 0.65 1.80 2.35 3.77 1.88 8.90 

lukas_2d_16_breast_1 1.14 1.56 1.58 3.90 1.67 22.16 0.70 1.80 2.37 4.10 1.88 7.02 

lukas_2d_16_foot_0 1.13 1.37 2.09 2.59 1.66 15.52 0.63 1.54 2.65 2.73 1.78 7.96 

lukas_2d_16_foot_1 0.89 1.26 1.62 2.50 1.41 11.02 0.56 1.22 1.84 2.42 1.32 5.58 

lukas_2d_16_hand_0 1.30 1.40 1.56 2.71 1.55 11.33 0.55 1.28 2.08 2.56 1.42 6.52 

lukas_2d_16_hand_1 1.20 1.41 1.58 2.66 1.56 12.99 0.56 1.29 2.09 2.51 1.44 5.74 

lukas_2d_16_head_0 0.82 0.96 1.38 1.82 1.12 23.06 0.47 1.15 1.77 1.98 1.29 7.49 

lukas_2d_16_head_1 0.92 1.07 1.53 2.11 1.25 38.68 0.51 1.25 1.97 2.26 1.39 7.68 

lukas_2d_16_knee_0 0.95 1.30 1.49 2.50 1.45 12.89 0.59 1.27 2.02 2.45 1.40 6.85 

lukas_2d_16_knee_1 0.95 1.37 1.89 2.50 1.53 11.71 0.63 1.35 2.06 2.44 1.48 6.64 

lukas_2d_16_leg_0 0.71 0.77 0.87 1.84 0.86 8.29 0.35 0.86 1.27 1.89 0.92 4.12 

lukas_2d_16_leg_1 0.51 0.70 0.78 1.66 0.77 5.89 0.31 0.73 1.10 1.66 0.78 3.27 

lukas_2d_16_pelvis_0 1.52 2.16 3.17 4.75 2.53 15.78 0.91 2.29 3.86 4.80 2.60 9.01 

lukas_2d_16_pelvis_1 1.30 2.05 2.39 5.42 2.19 14.09 0.87 2.12 2.77 5.59 2.20 7.09 

lukas_2d_16_sinus_0 1.09 2.41 2.78 3.63 2.55 10.73 0.57 1.21 1.85 2.47 1.33 5.67 

lukas_2d_16_sinus_1 1.28 1.39 1.55 2.62 1.53 11.14 0.54 1.18 1.86 2.41 1.28 5.98 

lukas_2d_16_spine_0 0.71 1.12 1.16 2.91 1.20 7.80 0.49 1.09 1.59 2.86 1.16 4.50 

lukas_2d_16_spine_1 0.75 1.15 1.55 2.59 1.28 8.41 0.48 1.13 1.77 2.53 1.24 4.52 

lukas_2d_16_thorax_0 1.47 2.34 2.42 6.16 2.50 16.38 0.97 2.36 3.37 6.28 2.50 7.87 

lukas_2d_16_thorax_1 1.11 1.69 1.97 4.08 1.80 12.66 0.76 1.82 2.36 4.19 1.89 6.70 

Sum 21.40 28.96 34.83 62.42 31.97 293.89 12.10 28.74 43.00 61.90 31.18 129.11 

�

Table 20: Compression and decompression times in seconds for the large Canterbury Corpus. 
Fastest times are printed in bold font 

 

File 
comp. 
GZIP 

93 

comp. 
MTF 

06 

comp. 
IF 
06 

comp. 
WFC 

06 

comp. 
IFC 
06 

comp. 
M03C 

decp. 
GZIP 

93 

decp. 
MTF 

06 

decp. 
IF 
06 

decp. 
WFC 

06 

decp. 
IFC 
06 

decp. 
M03C 

bible.txt 1.19 1.47 1.67 2.31 1.63 11.44 0.33 0.97 1.18 1.79 1.10 6.18 

E.coli 6.54 1.91 2.51 3.26 2.25 12.31 0.41 1.49 1.56 2.80 1.81 6.11 

world192.txt 0.50 0.78 0.86 1.28 0.86 6.38 0.20 0.56 0.70 1.05 0.64 3.48 

Sum 8.23 4.16 5.04 6.85 4.74 30.13 0.94 3.02 3.44 5.64 3.55 15.77 

�



- 35 - 
 

5. Conclusions 

The Burrows-Wheeler Compression Algorithm (BWCA) achieves good compression rates 

combined with high speed. Within this field, the post BWT stages, i.e. those that follow the 

Burrows-Wheeler Transformation (BWT) stage, play a central role in order to realize the best 

possible results. Implementations of post BWT stages typically consist of three parts: a Global 

Structure Transformation (GST), a Run Length Encoding (RLE) stage and an Entropy Coder (EC) 

stage. Context based approaches often include the GST and EC stage and skip the RLE stage. 

This paper compares the function and results of different post BWT stages: Move-To-Front (MTF), 

Inversion Frequencies (IF), Weighted Frequency Count (WFC), Incremental Frequency Count 

(IFC) and M03. All versions except the last one have placed an RLE stage in front of the post BWT 

stage as shown in Figure 3 and all used the improvements described in the respective sections. 

For the Calgary, Canterbury and large Canterbury corpora, the M03 based BWCA achieves the best 

compression rates. The IFC variant of the BWCA, offering good compression rates for all sizes of 

the files, has a higher throughput than the M03 based BWCA and is almost as fast as an MTF based 

BWCA. 

For large 16 bit medical images with big endian, the IF based BWCA achieves the best compression 

rates with context reversing, together with a moderate speed. 

At this point of time, it is difficult to predict if further improvements to recency ranking based GST 

algorithms will give better compression rates or whether the development of context based 

approaches will lead to better compression rates. In any case, the speed of the context based 

approaches must be improved in order to be comparable with other BWCA and PPM based 

implementations. 

6. Acknowledgements 

Special thanks go to William Teahan, who provided extensive comments on this work, and to 

Michael Maniscalco, who discussed the details of the M03 algorithm. The RLE discussions with 

Yaakov Gringeler and several remarks by Sebastian Deorowicz, Szymon Grabowski, Uwe Herklotz 

and Vadim Yoockin as well as the M03 implementation of Atsushi Komiya are appreciated very 

much. 

7. References 

[1] Burrows, M, Wheeler, D. A Block-Sorting Lossless Data Compression Algorithm. Technical 
report, Digital Equipment Corporation, Palo Alto, California, 1994, URL (March 2006): 
http://citeseer.ist.psu.edu/76182.html. 



- 36 - 
 
[2] Anderson, A, Nilsson, S. A New Efficient Radix Sort. 35th Symposium on Foundations of 

Computer Science, 714−721, 1994.  

[3] Anderson, A, Nilsson, S. Implementing Radixsort. The ACM Journal of Experimental 
Algorithmics, Volume 3, Article 7, 1998. 

[4] Fenwick, P. Block Sorting Text Compression. ACSC'96, Melbourne, 1996. 

[5] Kurtz, S. Reducing the Space Requirement of Suffix Trees. Software – Practice and 
Experience, 29(13), 1149–1171, 1999. 

[6] Kurtz, S, Balkenhol, B. Space Efficient Linear Time Computation of the Burrows and 
Wheeler-Transformation. In Numbers, Information and Complexity. I. Althöfer, N. Cai, G. 
Dueck, L. Khachatrian, M. Pinsker, A. Sarközy, I. Wegener, and Z. Zhang, Eds.  Kluwer 
Academic Publishers, 375-383, 2000. 

[7] Sadakane, K. Improvements of Speed and Performance of Data Compression Based on 
Dictionary and Context Similarity. Master's thesis, Department of Information Science, 
Faculty of Science, University of Tokyo, Japan, 1997, URL (March 2006): 
http://citeseer.ist.psu.edu/sadakane97improvements.html. 

[8] Sadakane, K. Unifying Text Search and Compression – Suffix Sorting, Block Sorting and 
Suffix Arrays, Ph.D. Dissertation, Department of Information Science, Faculty of Science, 
University of Tokyo, 2000, URL (March 2006): 
http://citeseer.ist.psu.edu/sadakane00unifying.html. 

[9] Larsson, N. Structures of String Matching and Data Compression. PhD thesis, Department of 
Computer Science, Lund University, Sweden, 1999, URL (March 2006): 
http://citeseer.ist.psu.edu/larsson99structures.html. 

[10] Seward, J. On the performance of BWT sorting algorithms. Proceedings of the IEEE Data 
Compression Conference 2000, Snowbird, Utah, J. Storer and M. Cohn, Eds., 173–182, 2000. 

[11] Itoh, H, Tanaka, H. An Efficient Method for in Memory Construction of Suffix Arrays. Proc. 
IEEE String Processing and Information Retrieval Symposium (SPIRE'99), 81–88, September 
1999. 

[12] Kao, T. Improving Suffix-Array Construction Algorithms with Applications, Master's thesis, 
Gunma University, Kiryu, 376–8515, Japan, 2001, URL (March 2006): 
http://citeseer.ist.psu.edu/692550.html. 

[13] Manzini, G, Ferragina, P. Engineering a Lightweight Suffix Array Construction Algorithm. 
Lecture Notes in Computer Science, Springer Verlag, Volume 2461, 698−710, 2002. 

[14] Kärkkäinen, J, Sanders, P. Simple Linear Work Suffix Array Construction. 30th International 
Colloquium on Automata, Languages and Programming, number 2719 in LNCS, 943–955. 
Springer, 2003. 

[15] Schindler, M. A Fast Block-sorting Algorithm for lossless Data Compression. In Proceedings 
of the IEEE Data Compression Conference 1997, Snowbird, Utah, J. Storer and M. Cohn, 
Eds., 469, 1997. 

[16] Balkenhol, B, Shtarkov, Y. One attempt of a compression algorithm using the BWT. SFB343: 
Discrete Structures in Mathematics, Falculty of Mathematics, University of Bielefeld, 
Preprint, 99–133, 1999, URL (March 2006): http://citeseer.ist.psu.edu/balkenhol99one.html. 

[17] Arnavut, Z, Magliveras, S. Block Sorting and Compression. Proceedings of the IEEE Data 
Compression Conference 1997, Snowbird, Utah, J. Storer and M. Cohn, Eds. 181–190, 1997. 



- 37 - 
 
[18] Arnavut, Z. Move-to-Front and Inversion Coding. ," In Proceedings of the IEEE Data 

Compression Conference 2000, Snowbird, Utah, J. Storer and M. Cohn, Eds. 193, 2000. 

[19] Arnavut, Z. Inversion Coder. The Computer Journal, 47(1), 46-57, 2004. 

[20] Chapin, B. Switching Between Two On-line List Update Algorithms for Higher Compression 
of Burrows-Wheeler Transformed Data. In Proceedings of the IEEE Data Compression 
Conference 2000, Snowbird, Utah, J. Storer and M. Cohn, Eds. 183-192, 2000. 

[21] Deorowicz, S. Improvements to Burrows-Wheeler Compression Algorithm. Software – 
Practice and Experience, 30(13), 1465–1483, 2000. 

[22] Abel, J. A fast and efficient post BWT-stage for the Burrows-Wheeler Compression 
Algorithm. Proceedings of the IEEE Data Compression Conference 2005, Snowbird, Utah, J. 
Storer and M. Cohn, Eds., 449, 2005. 

[23] Abel, J. Incremental frequency count - a post BWT-stage for the Burrows-Wheeler 
compression algorithm. Software – Practice and Experience, 37(3), 247-265, 2007. 

[24] Fenwick, P. The Burrows-Wheeler Transform for Block Sorting Text Compression -- 
Principles and Improvements. The Computer Journal, 39(9), 731-740, 1996. 

[25] Fenwick, P. Block-Sorting Text Compression - Final Report. The University of Auckland, 
New Zealand, Technical Report 130; 1996. 

[26] Maniscalco, M. comp.compression group. 
http://groups.google.com/group/comp.compression/browse_thread/thread/7555a0bc297d6691/
460f529474809a92?q=#460f529474809a92. 2004. 

[27] Maniscalco, M. A solution for context based blocksort compression - The M03 algorithm. 
http://www.michael-maniscalco.com/papers/m03.pdf . 2004. 

[28] Maniscalco, M. The M03 algorithm. Private correspondence. 2009. 

[29] Grabowski, S. Text Preprocessing for Burrows-Wheeler Block-Sorting Compression. In VII 
Konferencja Sieci i Systemy Informatyczne - Teoria, Projekty, Wdrozenia, Lodz, Poland, 
1999. 

[30] Kruse, H, Mukherjee, A. Improving Text Compression Ratios with the Burrows-Wheeler 
Transform. In Proceedings of the IEEE Data Compression Conference 1999, Snowbird, Utah, 
J. Storer and M. Cohn, Eds. 536, 1999. 

[31] Franceschini, R, Kruse, H, Zhang, N, Iqbal, R, Mukherjee, A. Lossless, Reversible 
Transformations that Improve Text Compression Ratios. Project paper, University of Central 
Florida, USA, 2000. 

[32] Awan, F, Zhang, N, Motgi, N, Iqbal, R, Mukherjee, A. LIPT: A reversible lossless text 
transform to improve compression performance. In Proceedings of the IEEE Data 
Compression Conference 2001, Snowbird, Utah, J. Storer and M. Cohn, Eds. 481, 2001. 

[33] Isal, R, Moffat, A. Parsing Strategies for BWT Compression. In Proceedings of the IEEE Data 
Compression Conference 2001, Snowbird, Utah, J. Storer and M. Cohn, Eds. 429−438, 2001. 

[34] Isal, R, Moffat, A, Ngai, A. Enhanced Word-Based Block-Sorting Text Compression. In 
Proceedings of the twenty-fifth Australasian conference on Computer science, Volume 4, 
January 2002, 129−138, 2002. 

[35] Abel, J, Teahan, W. Universal Text-Preprocessing for Data Compression. IEEE Transactions 
on Computers, 54(5), 497-507, 2005. 



- 38 - 
 
[36] Abel, J. Record Preprocessing for Data Compression. In Proceedings of the IEEE Data 

Compression Conference 2004, Snowbird, Utah, J. Storer and M. Cohn, Eds. 521, 2004. 

[37] Balkenhol, B, Kurtz, S. Universal Data Compression Based on the Burrows-Wheeler 
Transformation: Theory and Practice. IEEE Transactions on Computers, 49(10), 1043−1053, 
1998. 

[38] Bentley, J, Sleator, D, Tarjan, R, Wei, V. A locally adaptive data compression scheme. 
Communications of the ACM, 29, 320–330, 1986. 

[39] Cleary, J, Witten, I. Data compression using adaptive coding and partial string matching. 
IEEE Transactions on Communications, 32(4), 396–402, 1984. 

[40] Sayood, K. (Editor) Lossless Compression Handbook. Academic Press, 2003. 

[41] Abel, J. Lukas 2D 16 Bit Medical Image Corpus – A set of two dimensional 16 bit 
radiographs in TIF format. URL (March 2006): 
http://www.data-compression.info/Corpora/LukasCorpus/. 

[42] Adjeroh, D, Bell, T, Mukherjee, A. The Burrows-Wheeler Transform: Data Compression, 
Suffix Arrays, and Pattern Matching. Springer New York, 2008.   

[43] Maniscalo, M. A Run Length Encoding Scheme For Block Sort Transformed Data. Technical 
paper, 2000, URL (March 2006):  
http://www.geocities.com/m99datacompression/papers/rle/rle.html. 

[44] Maniscalo, M. A Second Modified Run Length Encoding Scheme For Block Sort 
Transformed Data. Technical paper, 2001, URL (March 2006):  
http://www.geocities.com/m99datacompression/papers/rle2.html. 

[45] Chapin, B. Higher Compression from the Burrows-Wheeler Transform with new Algorithms 
for the List Update Problem, Ph.D. Dissertation, University of North Texas, 2001. 

[46] Gringeler, Y. Private correspondence, 2002. 

[47] Abel, J. Advanced blocksorting compressor (ABC). 2003,  
URL (March 2006): http://data-compression.info/ABC/ 

[48] Nelson, M, Gailly, JL. The Data Compression Book, Second Edition, M&T Books, New 
York, 113-136, 1996. 

[49] Elias, P. Interval and Recency Rank Source Coding: Two On-Line Adaptive Variable-Length 
Schemes. IEEE Transactions on Information Theory, Vol. 21 (2), 194−203, 1987. 

[50] Balkenhol, B, Kurtz, S, Shtarkov, Y M. Modifications of the Burrows and Wheeler Data 
Compression Algorithm. Proceedings of the IEEE Data Compression Conference 1999, 
Snowbird, Utah, J. Storer and M. Cohn, Eds. 188–197, 1999. 

[51] Fenwick, P. Burrows Wheeler Compression with Variable Length Integer Codes. Software – 
Practice and Experience, 32(13), 1307–1316, 2002. 

[52] Binder, E. Distance Coder, Usenet group: comp.compression, 2000, URL (March 2006): 
http://groups.google.com/groups?selm=390B6254.D5113AD2%40T-Online.de. 

[53] Deorowicz, S. Second step algorithms in the Burrows-Wheeler compression algorithm. 
Software – Practice and Experience, 32(2), 99–111, 2002. 

[54] Ferragina, P, Giancarlo, R, Manzini, G. The myriad virtues of wavelet trees. International 
Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer 
Science vol. 4051, Venezia, 561-572, 2006. 



- 39 - 
 
[55] Abel, J. Improvements to the Burrows-Wheeler compression algorithm: after BWT stages. 

http://www.data-compression.info/JuergenAbel/Preprints/Preprint_After_BWT_Stages.pdf, 
2003. 

[56]  Komiya, A. m03c – Compression program based on m03. http://. 2009. 

[57] Gagie, T, Mancini, G. Move-to-Front, Distance Coding, and Inversion Frequencies Revisited. 
Lecture Notes in Computer Science vol. 4580, 71-82, 2007. 

[58] Wirth, A, Moffat, A. Can We Do without Ranks in Burrows Wheeler Transform 
Compression?. Proceedings of the IEEE Data Compression Conference 2001, Snowbird, 
Utah, J. Storer and M. Cohn, Eds. 419, 2001. 

[59] Fenwick, P. Burrows–Wheeler compression: Principles and reflections. Theoretical Computer 
Science, vol. 387(3), 200-219, 2007. 

[60] Ferragina, P, Giancarlo, R, Manzini, G. The Engineering of a Compression Boosting Library: 
Theory vs Practice in BWT Compression. Lecture Notes in Computer Science vol. 4168, 756-
767, 2006. 

[61] Foschini, L, Grossiy, R, Guptaz, A, Vitter, J, S. Fast Compression with a Static Model in 
High-Order Entropy. In Proceedings of the IEEE Data Compression Conference 2004, 
Snowbird, Utah, J. Storer and M. Cohn, Eds. 62, 2004. 

[62] Deorowicz, S. Context exhumation after the Burrows-Wheeler transform. Information 
Processing Letters, vol. 95, 313-320, 2005. 

[63] Gailly, JL. GZIP – The data compression program – Edition 1.2.4., 1993, URL (March 2006): 
http://www.gzip.org. 

[64] Komiya, A. m03c. Private correspondence. 2009. 

[65] Bell, T, Witten, I, Cleary, J. Modeling for Text Compression. ACM Computing Surveys Vol. 
21, 557-591, 1989. 

[66] Arnold R, Bell, T. A Corpus for the Evaluation of Lossless Compression Algorithms. 
Proceedings of the IEEE Data Compression Conference 1997, Snowbird, Utah, J. Storer and 
M. Cohn, Eds. 201–210, 1997. 

  

 


