Post BWT Stages of the

Burrows-Wheeler Compression Algorithm

Jirgen Abel

Ingenieurbtro Dr. Abel GmbH
Lechstrasse 1
41469 Neuss - GERMANY

Email: juergen.abel@data-compression.info

The lossless Burrows-Wheeler compression algorithm has received considerable attention over
recent years for both its simplicity and effectiveness. It is based on a permutation of the input
sequence - the Burrows-Wheeler transformation — which groups symbols with a similar context
close together. In the original version, this permutation was followed by a Move-To-Front
transformation and a final entropy coding stage. Later versions used different algorithms, placed
after the Burrows-Wheder transformation, since the following stages have a significant influence
on the compression rate. This article describes different algorithms and improvements for these
post BWT stages including a new context based approach. Results for compression rates are
presented together with compression and decompression times on the Calgary corpus, the
Canterbury corpus, the large Canterbury corpus and the Lukas 2D 16 bit medical image corpus.

Keywords: compression, Burrows-Wheeler transformation, block sorting

1. Introduction

First, a historical overview of the Burrows-Wheet@mpression Algorithm (BWCA) is presented;
the basic concepts of the different parts of tige@hm are explained in the next sections.

The family of the block sorting algorithms basedtbe Burrows-Wheeler Transformation (BWT)
has grown over the past few years starting withfitlse implementation described by Burrows and
Wheeler in 1994 [1] and BWT based compression foacueptance in the LINUX field and as a
new format in ZIP-files. Several authors have pmésg improvements to the original algorithm.
Andersson and Nilsson published in 1994 and 1998rakpapers about Radix Sort, which can be
used as the first sorting step during the BWT [2, Benwick described some BWT sort
improvements including sorting long words insteddingle bytes in 1995 [4]. Kurtz presented in
1998 and 1999 several papers about BWT sortingestaith suffix trees, which needed less space
than other suffix tree implementations and aredline time [5, 6].

-2-

Sadakane described a fast suffix array sortingraehi@a 1997 and 2000 [7, 8]. In 1999, Larsson
presented an extended sorting scheme for suffiayarf9]. Based on already sorted suffices,
Seward developed in 2000 two fast suffix sortingpathms called "copy” and "cache" [10]. Itoh
and Tanaka presented in 1999 a fast sorting atgoritalled the two stage suffix sort [11]. Kao
improved the two stage suffix sort in 2001 by a rteehnique which is very fast for sequences of
repeated symbols [12]. Manzini and Ferragina phblisin 2002 some improved suffix array
sorting techniques based on the results of Sevitlatd and Tanaka [13]. Beside linear approaches
based on suffix trees, Karkkainen and Sanders piedeén 2003 an algorithm which sorts the array
in linear time [14].

Several techniques for the post BWT stages have pablished as well. Besides the Move-To-
Front (MTF) improvements from Schindler in 1997][aBhd from Balkenhol and Shtarkov in 1999
[16], an MTF replacement, called Inversion Freqiesic was introduced by Arnavut and
Magliveras in 1997 [17, 18, 19]. Switching betweabfierent post BWT stages was examined by
Chapin in 2000 [20]. Deorowicz presented in 2000tlaar MTF replacement, named Weighted
Frequency Count [21]. An efficient post BWT staggremental Frequency Count, was presented
by Abel in 2005 [22] and more deeply with an hiehacal coding model in 2007 [23].

Various modeling techniques for the entropy codamdhe end of the compression process were
presented by Fenwick [4, 24, 25], Balkenhol andaBdav [16], Deorowicz [21] and Maniscalco
[26, 27, 28].

The purpose of this paper is to provide an overvigwdifferent BWT based compression
algorithms from a practical point of view. The facis set on different stages subsequent to the
BWT, with no special preprocessing for differemhdiof data like text preprocessing [23, 29, 30,
31, 32, 33, 34, 35], or binary preprocessing befoeeBWT [36]. Several variants including a new
context based algorithm will be presented and theasic properties, compression rates,

compression times and decompression times compared.

2. Basic Concepts

2.1 Sandard scheme

A typical scheme of the Burrows-Wheeler Compresgitgorithm (BWCA) is presented in Figure

1 and consists of four stages. Each stage is & ltaasformation of the input buffer data and
forwards the output buffer data to the next stddee stages are processed sequentially from left to
right for compression; for decompression they acegssed from right to left with the respective

backward transformations. For compression, thé $iage is the BWT. The purpose of this stage is

Input Outpu
data datz

— | BWT | | ST |] REE || EC |

Figure 1: Typical scheme for the Burrows-Wheeler compression algorithm

to sort the data in a way that symbols with a singontext are grouped closely together. The BWT
stage keeps the number of symbols during the wamsition constant, except an additional index,
which is created during the forward transformatma which has a value between 0 and buffer size
- 1. The additional index is needed during the teack transformation in order to move the
symbols back to their original order. The indexaasnteger can be encoded for example as a short
byte sequence in the front of the sorted symbole $econd stage is called Global Structure
Transformation (GST), which transforms the locahteat of the symbols to a global context [21,
37]. A typical representative of a GST stage is Mmve-To-Front transformation (MTF), which
was used by Burrows and Wheeler in their originabligation [1] and which was the first
algorithm used as a GST stage in a BWCA. The MHgestis an algorithm for the list update
problem, which replaces the input symbols by c@uesing recency ranking values [38]. Just like
the BWT stage — taking the additional index of BWT not into account — a GST stage does not
alter the number of symbols. The third stage typicrinks the number of symbols by applying a
Run Length Encoding scheme (RLE). Different aldon$ have been presented for this purpose,
with the Zero Run Transformation (RLEO) from Whedtaund to be an efficient one [24]. The last
stage is an Entropy Coding stage (EC), which cosga®the symbols by using an adapted model.
In order to elucidate the operation modes of thHeemint stages, Figure 2(a) - 2(e) displays the
transformed data of the input string "abracadabexaglabra" in hexadecimal ASCIl code. The
input data of the BWT stage — except the additiandéx which is not shown for simplicity — is
shown in Figure 2(a). As can be seen in Figure #{b)output data of the BWT stage contains
many sequences of repeating symbols and has adtvaature, i.e. symbols with a similar context
form small fragments. The GST stagdn this example an MTF schemetransforms the local
structure of the BWT output to a global structugeusing a ranking scheme according to the last
recently used symbols and produces sequences thwouas zeros which are displayed in Figure
2(c). The RLEO stage from Wheeler in Figure 2(dhoges the zero runs and the final EC stage

produces a bit output in Figure 2(e) by using ameretic coding scheme.

(a) BWT 1input 161 62 72 61 63 61 64 61 62 72 61 61 62 72 61 63 61 64 61 62 72 61
(b) BWT output :61 72 72 64 64 61 72 72 63 63 61 61 61 61 61 61 61 61 62 62 62 62
(c) GST output :61 72 00 65 00 02 02 00 65 00 02 00 00 00 00 00 00 00 65 00 00 00
(d) RLEO output :62 73 00 66 00 03 03 00 66 00 03 00 00 00 66 00 00

(e) EC output : 00 OD 01 8D B3 FF 81 00 72 A8 E8 2B

Figure 2: Transformed HEX data of "abracadabraabracadabra” by different stages

The BWT sorts the input array using the followingntext. By reversing the symbol order of the
input array, it is possible to use the preceedimgtext instead of the following context similar to
Prediction by Partial Matching (PPM) [39]. Balkehlamd Shtarkov reversed the symbol order for
binary files before the BWT [16]. They defined hindiles as files with an alphabet size of 256.
Fenwick mentioned, that even for binary files, exttreversing does not automatically lead to
better compression ratios [40]. For some type lef &.9. for image files with 16 bit pixels, which
store values with the most significant byte fidsig(endian) as the radiographs from the Lukas 2D
16 bit medical image corpus [41], reversing theuingrder offers noticeable improvement as to be
seen in the results section. It depends on theectisp type of file, if context reversing achieves
advantages; this implementation reverses binagg.fiNot all binary files have an alphabet size of
256, e.g. 8-bit image files with less than 256 addo Therefore, all files which have an alphabet
size higher than 230 are treated as binary filesaaa rearranged in reverse order before the BWT
in the presented implementations if not otherwiagesl.

2.2 Burrows-Wheeler Transfor mation

As the first stage of the compression algorithre, Burrows-Wheeler Transformation (BWT) is the
heart of the algorithm [1]. The purpose of thigst#s the reordering of the input data depending on
its context. The reordering produces many runsgjabkesymbols inside the output data of the BWT
stage. In order to move the reordered symbols laik their original positions, a backward
transformation exists, which reproduces exactlyitipeit sequence. The backward transformation is
a simple linear algorithm which is much faster tttae forward transformation. Further information
and variations of the BWT are explicated in 2008N\oyeroh, Bell and Mukherjee [42].

The function of the forward and backward transfaramawill be explained on the example of the
input stringABRAKADABRA with a length of 11 symbols. The counting of thdax starts with O.
The preceeding context of a symlisahside a string is defined as the context buildsiybols left

from s, which is the standard context used in compresstgorithms. The following context of a

-5-

Table 1
Producing the n rotations of ABRAKADABRA.

Index

o

© 00 N o oA WDN PP
W XU > X > U >» W XU > >
o > X >» O >» @ 1 >» >» W
> X » O >» w U » >» ©® X
~>» 0 >» ®m 1> > ® IV >
> 0O >» @ U » >» W XU > X
o >» ® XV >» > @D > X >
> @ OV >» >» @ XU > X > O
W U >» > W xumw > X > 0>
U > >» WD > X > 0O P>
> > ® U >» X >» O >» B X1
> ® XV > X >» O>» mw 0 >

=
o

symbols is defined as the context produced by symbolst fighm s, which is the context used in
the BWT because of the alphabetical sorting.

For the forward transformation, the input stringhwihe lengthn is writtenn-1 times under the
original string, producing a list with lines. Each line — starting with the second linés-then
rotatedi symbols to the right, with being the index of that line. Symbols which ledkie last
column are moved back into the first column. Talleshows the result for the input string
ABRAKADABRA. Next, all lines are sorted in alphabetical ord@uring this process, two columns
have a special meaning: the first and the lastneoluThe first column — called colunm(first) —
contains all symbols of the input string sortecaiphabetical order, which places symbols with a
similar following context directly behind each oth&he last column- called colunin(last) — has
some remarkable properties even without being cetelyl sorted. Because of the cyclic sortihg,
is the predecessor column Bf Therefore, many symbols with a similar followikegntext are
placed nearby which produces many runs of equabsigrin columnL. Compared to the original
string, L is much easier to compress for most entropy codé&re result for the input
ABRAKADABRA can be seen in Table 2. The output of the BWTcatemnL and index of the
original input string inside the list after the tog. In this example, the output consists of ttimg
RDAKRAAAABB and the index 2.

The entire forward transformation can be descritrgefly as:

1. Create all possible rotations of the input gtri@sulting in a list oh rotated strings.

2. Sort the rotated strings in alphabetical order.

3. Output the last columin of the list and the indeixof the input string inside the list.

-6 -

Table 2
Sorting of the n rotations of ABRAKADABRA.

Index

o

© 00 N o o A~ W N P

E
A
A
A
A
A
B
B
D
K
R
R

> >» » >» 1 1 A0 ®m ® >
X >»0 w>» >» >» > 0V IO
> ®m >» 1 X >» 0O w>» > =T
U »n @ >» » m >» U X >» >
> >» 0 >» Oxnx @ >» >» w X
W X >» @™ >» > O >» 0 1 >
T > >» »y @ x > W > > 0O
> O ®>» » » » 1 ® X »
> >» I X » OW>» x>0
™ ® > > >» > 0V X > 0 0

=
o

Common implementations of the BWT do not calculatetated strings of the input string, which
would be impractical for larger input sizes, bue wfferent data structures like a suffix array.
Instead ofn rotated strings the suffix array uses only theiogl string and the positions of the
start of the rotations [7, 8, 11, 12], leading tmach lower memory consumption.

Since no backward algorithm exists for a standégtadbetical sort of symbols, the question arises
how the backward transformation of the BWT is atdereconstruct the original order of the
symbols. One of the most remarkable propertiehefBWT is the fact that not only the original
order of the symbols can be reconstructed by collmand indexi, but that the backward
transformation is even much faster and simpler tharforward transformation.

Since the forward transformation is a special sbrthe input symbols, columh, which is the
output of the forward transformation and the inpiuthe backward transformation, contains exactly
the same symbols than colufanthey differ only in their respective positiondiéfefore, columir
can be reproduced by a simple alphabetical satie@tymbols of columh. ColumnsL andF are
then placed behind each other and build a simple tas shown in Table 3. The indekom the
output of the forward transformation is the staytipoint of the backward transformation. All
symbols of columrF are output using a special order of the lines. filsé symbol to output is the
symbol at columrF in line i, in this example the symbd@, which is the thirdA from the top in
columnF. The next line is the line which contains thedrfrom the top in columh. Here, line 6
contains the third\ and the symbol of columia in line 6, aB, is output as the second symbol. This
symbol is the second in columnL, leading to line 10, which contains the sec@&nith columnF.
The third output is the symbol of coluninin line 10, arR. The process continues until it reaches

the starting line, where it stops.

-7 -

Table 3
Reproducing the F column from RDAKRAAAABB.
Index L F
0 R A
1 D A
—> 2 A A
indexi 3 K A
4 R A
5 A B
6 A B
7 A D
8 A K
9 B R
10 B R
Table4
Calculation of the output symbols from RDAKRAAAABB.
Index L F
0 R A
1 D A
- » 2 A A
indexi 3 K A
4 R A
5 A B
6 A B
7 A D
8 A K
9 B R
10 B R

The entire backward algorithm can be described &ieps:

1. Create columfk by sorting the symbols of colunin

2. Start with lind.

3. Output the symbol at coluntnof the current line.

4. Move to the line which has the same positiothat. column within the set of the last symbol
than the position of the last symbol inside theafeéhe last symbol at thié column, e.g. if the last
symbol was ai, and theC was the fifthC in columnF, move to the line with the fiftke in column

L.

5. Repeat 3 and 4 until lines reached.

2.3 Global Sructure Transformation

The Global Structure Transformation (GST) is theosel stage within the basic Burrows-Wheeler
Compression Algorithm (BWCA). The output of the BWadntains many symbol fragments, which
have the same right context and a local probaldlisyribution. It is typical for the output of the
BWT that the symbol fragments change suddenly,chivig to a new set of symbols with a
different probability distribution. This local sttwre is transformed into a global structure by the
GST stage, which is better to compress for the t&ges A global structure, which is a structure
with a stable probability distribution for the widlile, can be achieved for example by a recency
ranking scheme like the Move-To-Front stage (MTE). [The MTF stage produces an index
sequence with many 0s. Another possibility is d@amise measurement scheme like Inversion
Frequencies (IF) [17, 18, 19]. Theses schemesheikkxplained in detail in the sections about the

post BWT stages.

2.4 Run Length Encoding

Run Length Encoding (RLE) is a simple and popukaiaccompression scheme. The sequence of
lengthl of a repeated symbalis replaced by a shorter sequence, usually contpione or more
symbols ofs, a length information and sometimes an escape symRLE stages differ from each
other mainly in three points: the threshgldhe marking of the start of a run, and the codihthe
length informatiorl. The threshold defines the minimum run lengttor a run to be encoded. lIf

is smaller than, the run keeps unchanged, andlig greater or equal tp the run is replaced. The
start of a run can be indicated by a thresholdamuan escape symbol If a threshold run is used,
the start is characterized by a small sequenceg which has a length df If an escape symbal
indicates the start of a ruajs normally put behin@ in order to characterize the run symbol. The
escape symbat must not be an element of the alphabet or occoesenfc have to be encoded
unambiguously. The length informatibrcan be coded in different ways. Usuallys put directly
behind the threshold run or behind s. Note, thahd| disturb the context af inside the output
sequence.

In the past, different RLE schemes for BWCAs haeerbpresented by Wheeler, Fenwick and
Maniscalo [24, 43, 44]. The main function of theRRIis to support the probability estimation of the
next stage. Long runs of a symistend to overestimate the global symbol probabititys for
fragments, where occurs only occasionally. The result is that witthese disjoined fragments, the

probability value forsis too high which leads to lower compression. Balkol and Shtarkov name

-9-

this phenomenon “the pressure of runs” [16]. TheERitage helps to decrease this pressure. In
order to improve the probability estimation of tB€ stage, most BWCA schemes place the RLE
stage directly in front of the EC stage.

Maniscalco describes in 2000 and 2001 algorithmishwhse a variable length code and divide the
length information into two parts: an exponent artl a binary representation part [43, 44]. The
exponent part, called the size of the variable tlengpde in Maniscalco's paper, reflects the
logarithm ofl. The binary representation part, called the valtighe variable length code by
Maniscalco, contains the bits of the binary repmést@n ofl and can be transmitted independently
from the exponent part.

Another example of an RLE stage for BWT based cesgwors is the Zero Run Transformation
(RLEO) from Wheeler [24, 25]. Wheeler suggestedimpanly the runs of the 0 symbols and no
runs of other symbols, since 0 is the symbol whih most runs. In this case, an offset of 1 is added
to all symbols except 0 [24]. All occurrences ah@he input array of the RLEO stage are encoded.
The run length of each zero run is incrementedri®yand all bits of its binary representation except
the most significant bit — which is always 1 — stered by the symbols 0 and 1.

Some authors suggested an RLE stage before the 8#jE for speed optimization, but such a
stage deteriorates the compression rate in gefralSince there are sorting algorithms which sort
runs of symbols practically in linear time [11, 18, 13] or even sort the whole array in lineargim
like the algorithm of Karkkainen and Sanders [1Agre is no reason to use such a stage before the
BWT stage for speed reasons. Besides speed, Cimgpitioned that an RLE stage before the BWT
can help to achieve better compression rates ires@ses by processing a larger amount of bytes at
one go with the fixed block size of the BWT [45].

In 2005, Abel presented a scheme, which uses and®dde directly behind the BWT stage — going
back to an idea of Gringeler [46] — and mentionsd teasons for the new position [22]. First,
encoding of the runs lowers the pressure of rusgléenthe GST stage, which leads to a more
compressible GST output stream. Second, the cosipregprocess achieves a higher speed,
because the length of the RLE output is usuallylieméhan the RLE input length and an RLE stage
is faster than a GST stage. The scheme is shovigire 3 and used for all following BWCA

Input Outpu
data data
— 9| BWT | pf RLE | — p| GST [_pf EC |

RLE data stream T

Figure 3: Improved BWCA with RLE stage in front of GST

-10 -

versions if not otherwise stated. The output of Ri€e stage consists of two streams, the main
stream — including the input symbols without thesre- going to the GST stage as well as the RLE
data stream going directly to the EC stage. The Rlaa stream contains the run length
information, which bypasses the GST stage in orddrto disturb the symbol context of the
following GST stage. At the EC stage, the RLE dstaam is encoded separately from the GST
output into the same output file [47, 23].

2.5 Entropy Coding

The type of encoding of the GST output inside therdpy Coding (EC) stage has a strong
influence on the compression rate. Different typegntropy coders can be used to compress the
GST output and RLE data stream. The most imporaes are Huffman and arithmetic coders.
Huffman coders offer better compression speed aitdneetic coders offer better compression
rates. The implementation presented here is basedithmetic coding. Arithmetic coding assigns
to each symbol of the alphabet a probability basethe former occurrences of that symbol. At the
start of the encoding, the interval [0, 1) is deddinto sub-intervals which equal the probabilités
the alphabet symbols. The larger the probabilitg larger the sub-interval. For each symbol to
encode, the sub-interval of the respective symbdiaken and again divided into sub-intervals
proportional to the probabilities of the alphabgnbols. The output is a rational number, which is
inside the sub-interval of the last symbol encodedood introduction can be found in the book of
Nelson and Gailly [48].

Table5
Examples of index codings.
Index 1. Level 2. Leve 3. Leve
0 ‘0’
1 ‘100’ - -
2 ‘101 - -
3 ‘11 0 0
4 ‘11 0 1
5 ‘11 1 0
6 ‘10 1 1
7 ‘1 1 2
8 ‘10 1 3
9 ‘11 2 0
100 ‘1 5 35
128 ‘1 5 63
129 ‘11 6 0
255 ‘11 6 126

-11 -

1. level
0:0
1:100
2:101
3:11

2. level

0..6

3. level 3. level
1. group 7. group
0.1 0..126

Figure 4: Coding model for recency ranking schemes

It is not sufficient to compress the GST output jog a simple arithmetic coder with a common
unstructured order-n context. Even after the usendRLE stage before or after the GST stage, the
symbols 0 and 1 are still by far the most commamisyls on average. As discussed by Fenwick
[24, 25] and later by Abel [23], a hierarchical oufl model offers good compression results for
such skew distributions.

Similar to the model of Fenwick, this paper usdsemarchical coding model for GST stages based
on a ranking scheme, consisting of three hieraathéwels as shown in Figure 4 and [23]. The first
and second level as well as each group in the thirdl use independent arithmetic coders with
their own contexts of symbol frequencies. The fiesel handles the symbols 0, 1 and 2, which are
the most frequent symbols. All symbols greater thare handled by the second and third level of
the model, with an escape symbol at the first lelelel two and three build a structured coding
model. Level two acts as a selector and dividesyngbols in seven disjoint subsets: {3, 4}, {5, ...
8} {9, ..., 16}, {17, ..., 32}, {33, ..., 64}, {65 ..., 128} and {129, ..., 255}. Level three harsltbe
offset of the current symbol in each subset [24, B8r example, the symbol 8 would be encoded in
the first level as Iary,in the second level as 1 and in the third leved as shown in Table 5.

For GST stages based on a distance measurememe|laas for the RLE data stream, a different

-12 -

/\,

exponent model mantissa model

1, 01, 001,
0001..

binary coder for
bit position 0
0.1

binary coder for
bit position 20
0.1

Figure 5: Coding model for distance schemes

coding model is used because the length of theabkths greater than 255 and because the context
is different from the context of indices. The cagiimodel consists of two main parts as pictured in
Figure 5 and is similar to the Elias gamma cod€].[4#9l parts are encoded by independent
arithmetic coders. The first part is the exponeart pnd compresses the binary logarithai each
distance, which represents the number of bits efiimary representation of the distance. The
exponent is saved in unary coding as a sequenckeQsf and a trailing 1 as a terminator symbol,
e.g. an exponent of 6 is saved as 0000001. Thendgmant is the mantissa part and compresses the
binary representation of each distance. For eathptsition starting with the second most
significant position — the first bit position isaays 1 — a binary coder with its own context isduse
Since the exponents are stored alongside the biegmngsentations, it is possible to decide how
many bits are used for each distance and to dettwelistance later unambiguously without a

terminator symbol between the mantissa data.

3. Post BWT Stages

3.1 Definitions

For the description of the algorithms, the follog/inotation will be used. L&k be an ordered set,
called alphabet, with siz8|| LetX = Xo X1 Xo...Xy.1 denote a sequence with lengtlandx; [0 A with
0<i<n-1. The first index of a sequence is 0. Each stageahanput sequenc¢g, and an output
sequenceXyy as well as a corresponding input alphasgtand an output alphabét:. A stage

processes the symbols Xf, and calculates the corresponding symbolXgf After finishing one

-13 -

stage Xout Of this stage will be used &, of the following stage. The maximal size ¥y is called

the blocksizd,. For most stage#, andAq: Will have a bit width of 8 bits resulting i} = Pou

= 256. Stages using a distance measurement, astag#s in the algorithm following that stage,
will have a bit width of log(b,). In this case a bit width of 32 will be assumedrder to handle all
values as blocksizes are smaller than 4 GB. Furtbes, the binary representation sequence of a
symbola is denoted aBR(a), for exampleBR(4) = '100' andBR(7) = '111".

In the following sections, several representativE&ST stages are discussed and compared. The
recency ranking and distance measurement schemdsecased as the GST stage in Figure 3, the
context based schemes includes the GST and EGsstage

3.2 Move-To-Front

3.2.1 Basic properties

The basic GST stage is the Move-To-Front stage (M&RFecency ranking scheme used in many
BWCA implementations. The MTF stage transforms itpgut symbol sequence into an index
sequence. For each input symboXgf an output index is written 9. The smaller the index, the
closer is the last occurrence of the correspondiymgbol. In order to calculate the index values, a
list of the alphabet symbols is used, which is oedeby the last occurrences of the alphabet
symbols. At the beginning, the list is sorted ineagling alphabet order. Each time a symbo{igf

is processed, the corresponding alphabet symidot&ed inside the list, the current index of that
symbol is written toX,: and the symbol is moved to position 0 in the [&ich a ranking scheme
transforms a run of repeated symbols with a rugtlenfm into a sequence of 0s with length 1.
The sequence of Os has a lengthmof 1, as the first 0 occurs one position later ia tutput
sequence. Since the BWCA sorts the input symbatsrding to their context, the output of the
BWCA contains many symbol runs. All these runsteaasformed into runs of Os by the MTF stage
independent of the former symbol value, i.e. thealocontexts are transformed into a global
context. For an entropy coding stage, it is mofieieht to compress many runs of the same symbol
than to compress many runs of different symbols.

One problem of the MTF stage is that it moves eaghbol directly to the front of the list, no
matter how seldom it has occurred before. If a yndppears only rarely, it removes other
symbols, which might be more frequent, from thenfrof the list to higher ranks, which are more
expensive to encode. An advantage of the MTF s&ige low complexity, which gives the stage a

high throughput.

3.2.2 Improvements

Several enhancements try to improve the propeofiese MTF stage like the M1 and M2 version

-14 -

of Schindler [15], the MTF-1 algorithm from BalkesihKurtz and Shtarkov [50] and the MTF-2
algorithm from Balkenhol and Shtarkov [16]. The Mfhd M2 versions use flags to achieve an
output sequence, which increase the number of Gasmbols at the cost of rank 1 symbols, i.e.
they produce more 0s [15]. The MTF-1 moves only Isgis from the second position to the front of
the list, whereas symbols with higher positions m@ved to the second position. MTF-2 differs
from MTF-1 in that symbols from the second positeoe moved to the front of the list only if the
last ranking value was not zero, i.e. if the sagmel®l occurred again. Fenwick used a sticky MTF
stage [51] in order to improve the compression. ratiethese MTF variations try to make the MTF
stage slower to adept when processing new appesyimbols.

Another improvement to the standard BWCA with an AM3tage is to place the RLE scheme
directly in front of the MTF stage as shown in Fig3 instead of in front of the EC stage. For the
MTF based BWCA used in the results section, a stahtMTF scheme is used with an RLE stage

in front of it.

3.3 Inversion Frequencies

3.3.1 Basic properties

Several MTF replacements have been unveiled shecbitth of the BWCA in 1994. Some of these
improvements are based on a distance measurerkerihé& Distance Coding (DC) algorithm from
Binder [52, 53] and the algorithm from Arnavut aMdgliveras [17]. which they named Inversion
Frequencies (IF). In 2000, Arnavut compared theF\MTage with the IF stage [18]. The IF stage
offered better compression than the MTF stagelfopst all files. In 2004, several IF schemes have
been compared against MTF like schemes by ArnalRit Particularly for large image and DNA
files, the IF schemes achieved better compressi@s than the recency ranking schemes.

An theoretical analysis of the IF algorithm wassamted by Ferragina, Giancarlo and Manzini in
2006 at the ICALP Conference [54]. The IF algoritiemot a recency ranking scheme like MTF
but is based on distances between the occurrefitks same symbols. It produces for each symbol
a [0 A, a sequenc&,. For each alphabet symba) the input sequenck, is scanned and if the
current element oK, is equal toa, the number of symbols greater tharbetween the current
position and the last position afis output. In order to reproduc&, from the set ofy, either the
frequencies of the alphabet symbols or a terminsyatbol behind each, is needed in addition.
One advantage of the IF algorithm is the fact thatpartial sequence of the last symbaif the
alphabet, calle&, consists only of the symbol 0. Therefojs not needed in order to reproduce
the original sequence and the lengtiXgf gets smaller than the lengthXf. Xo.: of IF is different

from Xoie Of MTF in many aspectXq: of the MTF stage contains many zero runs, whighegent

-15 -

40 I 40
20 E 20 »
1 1 1 1 1 1 1

0 o 1 1 1] 1 1 1
o 118 210" 3100 410° s510° e10° 710° 0 110° 210° 310" 410 s10° ewt 7o

(a) MTF (b) IF

Figure 6: Fraction of zeros of bookl for (a) MTF output and (b) IF output

runs of equal symbols, and these runs are moressrdqually distributed over the whole sequence
as pictured in Figure & of the IF stage consists of several sequegesne for eacta O A,
except for the last symbal S, of higher symbols have typically smaller valueanis, of lower
symbols, since the number of symbols, which aratgrehan the scanned symbol, is decrea§ing.
for the last symbols ok, have usually many long runs of zeros. In ordeefiresent this behavior,
Figure 6 compares the fraction of the zeros offillkebookl over the file position for both the
MTF stage output and for the IF stage output. Fbetéer comparisorg; is included inXy of IF.

As can be seen, the average fraction of zeroseimtiput of IF is rising towards the end of the fil
until it reaches 100% at the end. In the outputMdiF, the average fraction of zeros fluctuates

around 60%.

3.3.2 Improvements

For each sequen&, only symbols which are greater thamare counted. Hence, if symbols with a
high probability are processed first, the partiedjsences of the following symbols, with a lower
frequency distribution, have smaller values. On dtteer hand, the partial sequences for symbols
with a high frequency distribution are longer ththe partial sequences for symbols with a lower
frequency distribution. In order to point out tm#uence of the frequency distributiof, of the IF
stage is sorted in ascending frequency order ak ageln decreasing frequency order. Table 6
denotes the compression rates for the originaladdphand for both sorted alphabets. In most cases,
the ascending frequency alphabet permutation pesibetter compression rates than the original
alphabet.

-16 -

Table 6: Compression ratesin bps for IF stage with an original alphabet,
a permuted al phabet sorted by ascending frequencies and
a permuted al phabet sorted by descending frequencies.
Best compression rates are printed in bold font.

File Original Asc. Frequ. Desc. Frequ.
Alphabet Alphabet Alphabet
bi b 1.926 1.919 1.936
book1 2.230 2.231 2.242
book2 1.941 1.933 1.948
geo 4.196 4.243 4.161
news 2.420 2.405 2.433
obj 1 3.880 3.892 3.793
obj 2 2.495 2.481 2.487
paper 1 2.436 2417 2.449
paper 2 2.350 2.340 2.358
pic 0.709 0.709 0.706
pr ogc 2.482 2473 2.498
pr ogl 1.716 1.703 1.723
progp 1.730 1.719 1.737
trans 1.519 1.506 1.544
Avg. 2.288 2.284 2.287

While most files achieve a better compression watie an ascending frequency alphabet, some files
have better results with a descending frequendyadlgt. Onlybook1 achieves the best result with
the original alphabet, but the result is very closeone of the ascending frequency alphabet. In
order to find the optimal sorting direction for bafile, some characteristics of the frequency
distribution of A, can be used. For each symbobf A, letf, be the number of occurrencesef
within X, i.e. the symbol distribution. Ldt.y denote the average frequency countXgfwith

lengthn by
n
F =, (l)
avg |An|
Further,G is defined as the set of symbols for whigls greater to .4 by
G={al fa > 2Fayq} -)

ThenS describes the percentage share of symbaisthe alphabe#,, for whichf, is greater to 2
Fag by

s:1o||§||. (3)

-17 -

Table 7: Percentage share S of symbols for which f, > 2 Fayg.

File S
bi b 13.41
book1 15.85
book?2 15.46
geo 5.47
news 15.15
obj 1 10.55
obj 2 9.38
paperl 14.58
paper 2 16.30
pi c 11.32
pr ogc 13.98
pr ogl 18.18
progp 14.44
trans 17.17
Avg. 13.66

Table 7 revealsS for each file of the Calgary Corpus. The valuesSdbr the filesgeo, obj1,
obj2 and pic are the lowest ones in the table. All of them @kaebj2 achieve the best
compression rates with a descending frequencyosdér. As a heuristic approach in the presented
implementation, the alphabet inside the IF stageersnuted depending on the symbol distribution.
The IF stage calculates the frequency distributbithe symbols together with the corresponding
value ofS at first, and performs afterwards a permutatiodfIf Sis greater than or equal to 10,
the alphabet is sorted in ascending frequency patleerwise in decreasing frequency order.
Another improvement for IF based BWCASs is a speRiaE stage in front of the IF stage. The RLE
stage calculates for each run of lengttwo parts: the exponent part and the mantissa giantlar

to the EC model of Figure 5. The exponent part ste®f a run of the same symbol with length
logx(n-1), i.e. the exponential part of the original nemgth. This run is usually much shorter —
especially for longer runs — and is written irXg:. The binary representatioBR(n-1) as the
mantissa part is written out as a bit sequenceoattlany terminator symbol and is the RLE data
stream shown in Figure 3. The RLE data stream Isgsashe GST stage and is encoded
independently fronXy, in the EC stage.

-18 -
3.4 Weighted Frequency Count

3.4.1 Basic properties

The Weighted Frequency Count algorithm (WFC) wasented by Deorowicz in 2002 [53]. As a
representative of a ranking scheme, it is closaviTd- than to IF. It replaces the input symbol
with a corresponding ranking valyéx). The difference between WFC and MTF is the fuorcti
which calculates/(x). Inside the MTF algorithmy(x) is the index of the current input symbol
within a listL of alphabet symbols. Upon each request, die current index(x) is output and is
moved to the front of. Since a symbol is moved straight to the fronit @fithout taking the former
frequency distribution of this symbol into accoutte MTF stage might push more frequent
symbols aside by less frequently used symbols mhegii sub optimal compression rates. The WFC
stage calculateg(x) by a function, which takes into account the symtvequencies and the
distance of the last occurrencesxahside a sliding window of sizig.x [53]. Hereto, each position
inside the sliding window is assigned a weight. Weeghts of closer distances are higher than the
weights of distances more far away. For each akpthsyombol, the weights of its occurrences inside
the window are summed up into a corresponding @uithe counter list of the alphabet symbols
is sorted in descending order, i.e. the largeshmyus at index position 0. The weighting and the
sorting have to be recalculated for each symbatgssed. This way, more frequently used symbols
get a lower index value than less frequently usgab®Ils, which supports the following EC
probability estimation. Table 8 presents the avenamking values, of the MTF and WFC stage
for the files of the Calgary Corpus. The MTF and @$tage are both performed with an RLE stage
processed beforehand. In all cases, the averaggengavalues of the WFC stage are smaller than
the corresponding values of the MTF stage leadinigetter compression rates. The main drawback

of the WFC stage is the high time consumption asrilged at the results section.

3.4.2 Improvements

The WFC implementation of Deorowicz gets the beshgression rate with 2.249 bps for the
Calgary Corpus by the weight functiorsgvwhich uses 5 logarithmic quantized levels [S53]. A
symbols within a level get the same weight. Forithplementation of his algorithm, a wide set of
different weight functions based on logarithmic desvwas examined by Deorowicz. Since the
compression rate depends on several parameterdebis weight function and the number of
logarithmic levels, like the kind of RLE algorithend the model of the EC stage, it is not easy to
predict which weight function and number of levaldl lead generally to the best compression
results. The WFC approach described in this papesed in the ABC compression program [47,
55] and uses a finer graduation by using more $ewehich leads to improved results but needs

more time to calculate. In the present implemeotatthe best compression rate is achieved at 12

-19 -

Table 8. Average ranking values r, for the MTF and WFC stage.

File MTF WFC
Averagery Averagery

bi b 5.66 5.42
book1 3.86 3.51
book2 4.39 4.07
geo 49.61 44.76
news 6.82 6.24
obj 1 46.32 43.66
obj 2 18.38 17.59
paperl 5.86 5.57
paper 2 4.85 4.54
pi c 8.21 7.08
progc 7.21 6.88
pr ogl 5.02 4.78
progp 5.64 5.45
trans 6.15 5.91
Avg. 12.71 11.82

logarithmic levels instead of 5. For the size ad #iding windowt o, the same value as in [53] is
used:
trax = 2048 . (4)

The individual weights of the weight function arecentral significance for the compression rate.
Since the structure and symbol distribution vafresn file to file, a weight function with fixed
weights independent from the file structure wilk head to optimal compression rates for all files.
For some files, a function with stronger weights $gmbols of the immediate past rather than for
older symbols is best suited. For other files, &htefunction, which weights older symbols almost
the same as more recent symbols, offers betteltse3inerefore, the present implementation does
not use fixed weights, but calculates the weigkisetding on the symbol distribution.

Hereto the same parametis used as before in the IF secti®describes the percentage share of
symbolsa of the alphabef;,, for which the frequency coufy of a inside X, is greater to Fay,
defined in equations (1) to (3). Furth&t) is defined as an integer function with paramepgr®:
andS

-20 -

L7 =0
fpo.ps(l) =12 =1, (5)
fpo,pl,s(I _1) Epo |>2
py+ (1 (5°))

The distance from the current position inside fidéreg window is described bly starting with 0 as

the next symbol to the left from the current pasitiThen, the weight functio/mpo,plis(t) for the

present implementation is defined as:

fpo.p.s@ =0
fpgps® 20sts2t-1

Foo,pr,5(2) Act<2?2 -1
Wpo,pl,S(t): fpo,p1,5(3) 2 t<9d 1 .
fpg.ps@d 20st<2t-1
0 t > 2048

Table 9 displays the compression rates for diffevatues ofpy andp:. As to be seen, there is no

Table 9: Compression ratesin bps for different Wp,, pl,S(t) :
Best compression rates are printed in bold font.

Po=2400 p=2600 pP=2800 po=2400 Po=2800 Py=2500

File p;=4000 p;=4200 p,=4400 p;=4400 p;=4000 p,=4300
bi b 1.879 1.882 1.885 1.876 1.897 1.877
book1 2.251 2.249 2.250 2.256 2.255 2.252
book2 1.932 1.931 1.933 1.935 1.940 1.932
geo 4114 4.105 4.099 4.134 4.086 4.121
news 2.384 2.380 2.378 2.391 2.378 2.386
obj 1 3.675 3.676 3.675 3.681 3.681 3.676
obj 2 2.389 2.394 2.401 2.386 2.422 2.388
paper 1 2.374 2.377 2.381 2.373 2.395 2.373
paper 2 2.326 2.326 2.326 2.331 2.332 2.327
pi C 0.708 0.706 0.705 0.711 0.703 0.708
progc 2.411 2.413 2.416 2.413 2.427 2.412
pr og| 1.657 1.655 1.654 1.659 1.655 1.657
progp 1.653 1.654 1.656 1.651 1.666 1.652
trans 1.431 1.430 1.430 1.432 1.430 1.432

Avg. 2.227 2.227 2.228 2.231 2.233 2.228

-21 -

best combination gb, andp; for all files, because the results differ fromeftb file. Therefore, the
parametergo, andp; were chosen empirically [55], whereas the valu& dd determined by the
symbol distribution of the respective file. The tbeserall compression rate is achieved by the
following values:

Po = 2600,)

Py = 4200 (8)

Even though this choice leads to the best ovecaipzession rate, many files obtain better results
with different settings, e.g. the filpeo. The EC model used for the WFC based BWCA is tGe E

model of Figure 4 for ranking schemes describetiénEntropy Coding section.

3.5 Incremental Frequency Count

3.5.1 Basic properties

The WFC stage offers strong compression ratesit Imats a high cost of computation, because the
weighting of the symbols within the sliding wind@md the sorting of the list has to be recalculated
for each symbol processed. At the Data Compressiaference 2005, a new scheme was presented
by Abel which tries to achieve compression rategaxl as the WFC stage but with a much lower
complexity [22, 23]. The main idea is to use cowmfer symbols within a sliding window of the
past like the WFC stage, but to update only onentasufor each symbol processed. This way, only
one counter needs to be resorted inside the llsthymakes the stage much faster than the WFC
stage. In order to weight common and close symsintnger than rare and distant symbols, the
counters can be increased or decreased; on avdrageare increased. Therefore, the stage is
named "Incremental Frequency Count" (IFC) [22]. Thenters are rescaled frequently in order to
prevent overruns.

In front of the IFC stage, an RLE scheme is usetthvteplaces all symbol runs with lendtby a

run of the same symbol with a length of 2 [23]. Tdr@inal run length is sent to the RLE data
stream and bypasses the IFC stage as shown ireRgtihe coding model is the same as the model
for distance measurement and shown in Figure 5 [23]

The IFC stage consists of a loop, which procesdsput symbols. The loop is divided into 5
parts. For each alphabet symbol, a counter is uskk@dounters are sorted in a list in descending
order, i.e. the counter with the highest value leced at index position 0. At the beginning, all
counters are reset to 0 and ordered in ascendimgladt order. The first part of the algorithm reads
the next symbol of the input stream and outputscthreent index of the corresponding counter. The

second part calculates the difference between mdexi averages. An index average is the average

-22 -

value of the last indices inside a sliding windoissizewindow_size. The averagavg; at positioni
inside the input stream with the current indiedex; is calculated by:
_ (avgj—1 [(window__size—1)) + index

avg; = : : : 9)
window _size

In the approach presented here, a value of 8 i issevindow_size. Larger values make the stage
adapt slower, whereas smaller values make the atdgyat faster to context changes. The third part
of the IFC calculates the incremaitthe counter values. In order to obtain an ousgauence with

a low index average, the increment has to be chesgncarefully. It is not sufficient to increment
the respective counter by a constant, linear ooe&ptial value. Instead, the increment is chosen
depending on statistical properties of the recedices. First, the difference between the lastevalu
avgi-; and the current valusyg; is calculated:

dif, .= avg; —avgj_1 - (10)

In order to ensure that small differences are ecbatccordingly but bigger differences are not

overweighteddif; is limited by a fixed maximurdm:

difl; := min(dif; |, dm) ign(if;) . (11)

The limitation has a similar effect as in the syidldTF stage of Fenwick [51], as it lowers the
influence of large index differences, which occurridg context changes. Here, a value of 16 is
used fordm. Finally, the incremenig; is calculated in a way that it decreases whemgego starts

to change and that it increases when a contextnhesatable. This way, frequent symbols in a
stable context are weighted more strongly than syawbols of a changing context.

inG; 1 [difl;

inG :=ing_; —(Y Ly . (12)

Since an RLE stage is in front of the IFC stage,rtin length of every run has been cut to 2 inside
the IFC stage. In order to emphasize the weightun$, inc; is increased by 50% if the current
symbol equals the last symbol. Finally, the counfethe current symbol is increased ilog;. The
fourth part of the IFC stage is concerned with aésg. If the counter of the current symbol
exceeds 256, all counters amd; are halved. At the fifth and last part of the I15@ge, the counter
list is sorted in descending order. Only one coumigs changed since the last symbol was
processed and needs to be moved inside the listetproper position. If the counter has a value
equal to other counters in the list, it is movedhe smallest index of these counters. Sorting one

counter is much faster than the sorting of the whist at the WFC stage [23].

3.5.2 Improvements

Because of the RLE stage of Figure 3 in front & BRC, a zero in the IFC output stream occurs

-23-

only separately and is always followed by a noro zmbol. This property can be exploited by an
appropriate EC model, which switches to a diffei@onitext after a zero has occurred. This context

switching improves the compression rate.

3.6 TheMO03 algorithm

3.6.1 Basic properties

In 2003 Michael Maniscalco developed a new post BM&lge based on context properties of the
BWT called MO3 [28]. The algorithm was presentec004 at the comp.compression group [26]
by a rough draft, which described some basics efriew algorithm [27]. An implementation of
MO3 with source code is available from Atsushi Kgan[56]. In this paper a complete description
of the algorithm is published for the first timeh& main idea of MO3 is to divide the BWT output
data into several context substrings iterativelyilumach substring contains only one kind of
symbol. These intervals determine the BWT outpté dampletely. The M03 stage is not a normal
GST stage, because the output has not a globatwteubut still many local properties. Therefore,
the M0O3 stage includes the entropy coding stagerdier to take the utmost advantage of these
properties.

A simple example using the striddBRAKADABRA will be used to elucidate the modus operandi of
MO03. The column$ andL of the stringABRAKADABRA are listed in Table 10. Colunintogether
with the BWT index 2 represent the BWT output af thput stringABRAKADABRA. The output of
the MO3 encoder is written below in bold letters.

Table 10
Column F and L of ABRAKADABRA.

Index

o

© 00 N o o b~ W N P

F
A
A
A
A
A
B
B
D
K
R
R

W w > > > > XUV X >» O x|l

=
o

-24 -

Table 11
Decoder modd after the first iteration of MO3

Index

0
1
>2
3

© 00 N o o b

1
A
A
A
A
A
B
B
D
K
R
R

10

MO3 uses an iterative process by dividing columimto several sequences. During each iteration,
every sequence of the former iteration is dividatb ismaller subsequences. The number of
subsequences for each sequence is given by theemwhhlifferent symbols inside the respective
interval at columnL for that sequence. The length of each subsequisndetermined by the
frequency count of the respective symbol inside thirval. If a subsequence contains only one
kind of symbol, it is completely determined anch@ divided any more.

At the beginning, M03 transmits the BWT index ahd humber of substrings of the first iteration.
The first iteration of MO3 divides the completeental of columnL. The number of substrings is
given by the number of different symbols at columrnn the present example the interval contains
five different symbolsA, B, D, K andR. These symbols are transmitted. For each of thgsdols

a subsequence is created. The length of each sudsExis determined by the frequency of the
respective symbol at column These frequencies are transmitted in lexicoggtorder of the
symbols.

Up to now, the output of MO3 consists of the foliog/data:

-2 (BWT index)

-5 (number of substrings of the first iteva)

-A,B,D,K,R (symbols of substrings of the first iteration)

-52,1,1,2 (frequency counts of the symbols of the fitstation)

During the decoding process, the decoder builddeifrom the already transmitted data. After

the first iteration, the model of the decoder itucan 1 is equal to columR as depicted in Table

-25 -

Table 12
Decoder model after the second iteration of M03

(symbols at the final position are printed in bold)

Index

0
1
->2

© 00 N o O b

1
A
A
A
A
A
B
B
D
K
R
R

W W >» >» >» > U O X O >N

11.

In the second iteration of M03, the five subseqesnaf the first iteration are further divided. For
each symbol, the frequency count at colulnrinside every subsequence is output. The first
subsequence has a length of 5 and reaches from dhieindex 4. At columh, the symbolA has a
frequency count of 1 inside this interval. The setsubsequence has a length of 2 and reaches
from index 5 to index 6. The frequency count of bgnA is 2 inside this interval. The third
subsequence has a length of 1 and reaches from thtteindex 7 with a frequency count of 1 for
symbol A. The fourth subsequence has a length of 1 andesaitom index 8 to index 8 with a
frequency count of 1 for symb#@l Finally, the fifth and last subsequence has gtleof 2 reaching
from index 9 to index 10 with a frequency countOofor symbolA. Accordingly, the frequency
counts of the other four symbols are calculatedafbsubsequences.

The output of the second iteration of MO3 is detasd by the frequency counts of the symbols in

lexicographical order:

-1,2,1,1,0 (frequency counts of symbaAlof second iteration)
-0,0,0,0,2 (frequency counts of symbBlof second iteration)
-1,0,0,0,0 (frequency counts of symbbl of second iteration)
-1,0,0,0,0 (frequency counts of symbidlof second iteration)
-2,0,0,0,0 (frequency counts of symbRlof second iteration)

After transmitting these frequency counts, the decas able to construct the model presented in

- 26 -

Table 13
Decoder model after the third iteration of MO3

(symbols at the final position are printed in bold)

Index 1 2 3
0 A A R
1 A D D

>2 A K A
3 A R K
4 A R R
5 B A A
6 B A A
7 D A A
8 K A A
9 R B B
10 R B B

column 2 of Table 12. Note that the symbols of sgbence 2 until subsequence 5 from index 5 to
index 10 contain only one kind of symbol and therefare completely determined. These symbols
found their final destination inside colurhn The symbols of the first subsequence from indéx O
index 4 are not completely determined and neec tiutther sorted.

The third iteration of MO3 transmits the frequermoynts for the symbols, which are not located at
their final position, i.e. the symbols of the fistbsequence. The first subsequence consists of fou
different symbols, therefore four new subsequecescreated. The first, second and third of the
new subsequences each contain one symbol, thédnfand last of the new subsequences contains
two symbols.

The output of the third iteration of MO3 transmifse frequency counts of the symbols in

lexicographical order:

-0,0,1,0 (frequency counts of symbailof third iteration)
-0,1,0,0 (frequency counts of symblof third iteration)
-0,0,0,1 (frequency counts of symbidlof third iteration)
-1,0,0,1 (frequency counts of symbRlof third iteration)

The decoder builds the model presented in colunoh Bable 13. Since the first three of the new
subsequences each contain only one symbol, thegoarpletely determined. The fourth of the new
subsequences contains two symbols and need tortherfsorted. Note that the order of the two
symbols could b&R as well afRK.

-27 -

The fourth iteration of M0O3 transmits the frequermounts for subsequence between index 3 and
index 4 in lexicographical order:
-1,0 (frequency counts of symbidlof third iteration)

-0,1 (frequency counts of symbRlof third iteration)

After the fourth iteration of MO3 the complete coln L is determined as listed in Table 10.
Note that no RLE stage is used behind the BWT stageder to keep the full context of the BWT
output unchanged.

3.6.2 Improvements

The basic M03 scheme described before, can be ragrnm several ways by cutting of data, which
is already determined and therefore redundant.

At each iteration, the total number of symbolsdeseach subsequence is known beforehand to the
encoder as well to the decoder. Therefore, aftersthim of the transmitted frequencies reaches the
total number of symbols inside that subsequencemore information needs to be transmitted,
which makes the trailing zeros at the sequenceegiiency counts unnecessary.

For example, the original output of the seconditien consisting of

-1,2,1,10 (frequency counts of symbaAlof second iteration)
-0,0,0,0,2 (frequency counts of symbBlof second iteration)
-1,0,0,0,0 (frequency counts of symbblof second iteration)
-1,0,0,0,0 (frequency counts of symbidlof second iteration)
-2,0,0,0,0 (frequency counts of symbRlof second iteration)

can be reduced to

-1,2,1,1 (frequency counts of symbAlof second iteration)
-0,0,0,0,2 (frequency counts of symbBlof second iteration)
-1 (frequency counts of symHlolof second iteration)
-1 (frequency counts of symhlof second iteration)
-2 (frequency counts of symb®lof second iteration)

without any loss of information.

Furthermore, the output of the frequency counts lmarcompressed by an arithmetic coder. For
each frequency count to output, the maximum of thequency count is known beforehand and
decreases along the output sequence. Adjustintetiygh of the intervals inside the model of the
arithmetic coder for the possible numbers to endedés to shorter output sequences.

For example, the frequency counts of symdolf the second iteration consists of the sequence:
-1,2,1,1 (frequency counts of symbaAlof second iteration)

- 28 -

leading to the following possible output ranges:
-1 (possible 0, 1, 2, 3, 4, B),(possible 0, 1, 2, 3, 4]},(possible 0, 1, 2,} (possible 0, 1).

3.7 Other post BWT Stages

Beside the aforementioned schemes, there haverbeenGlobal Structure Transformation (GST)
stages published. One scheme which is close tb-teage described above is the Distance Coding
(DC) algorithm from Binder [52, 53]. The DC algdm is based on the Interval Encoding scheme
from Elias [49]. For each symbol of the input seqees the DC algorithm outputs the distance to
the next occurrence of the same symbol. If the ®}dbes not occur again, a zero is output. Binder
proposed three improvements to the basic algorits2h If the length of the input sequence is
transmitted too, the last sequence of ending zisrasdundant. Furthermore, for calculating the
distance to the next occurrence of the same syrmhbtt,unknown symbols have to be counted. The
last improvement is that if the last symbol is dgoahe current symbol, nothing has to be output
and DC proceeds to the next symbol. The main @iffee to the Interval Encoding of Elias is that
DC does not count known symbols and skips repeatedbols. Further analysis, theoretical
properties and efficiency of the MTF, DC and IFges are studied in 2007 by Gagie and Mancini
[57], who present improved versions of the thregeas, which are locally optimal on low-entropy
strings.

Another approach for post BWT stages is the dioecting of the BWT output. Balkenhol and
Shtarkov described an approach in 1999, which lesntie BWT output as a concatenation of
uniform fragments, i.e. the symbol distribution @hanging in discrete intervals and not
continuously [16]. A uniform fragment is a symbebsience with a constant probability distribution
of the symbols [16].

A switching scheme between different post BWT stagging the snake algorithm was developed
by Chapin in 2000 [20]. Different post BWT stagesrg/paired. The best result was achieved with
the Besix of 2x — 1 algorithm and a variant of a sticky MTF algiom [20].

Wirth and Moffat discussed in 2001 direct symbotading similar to PPM techniques instead of
GST schemes [58, 59]. They used a hierarchical msidglar to the one from Balkenhol and
Shtarkov [16]. Also, Ferragina, Giancarlo and Manaiised in 2006 an RLE stage together with an
EC stage based on an order-zero arithmetic cod#routi any GST stage, called RleAc, and
received strong results [60].

A post BWT compression scheme based on waveles s introduced 2004 by Foschini,
Grossiy, Guptaz and Vitter [61]. They used a wavskee in conjunction with RLE and gamma

encoding instead of an arithmetic coder and prapdbe compression format WZIP. Further

-29 -

theoretical analysis of wavelet trees in BWT corspien is provided by Ferragina, Giancarlo and
Manzini in 2006 [54], who improved the asymptotierformance by presenting the so called
generalized wavelet trees.

A context based approach, which uses the propeofighe BWT output in order to calculate
information of the original context of the BWT inpstring, was presented by Deorowicz in 2005
and called context exhumation. By transmitting fileguency of the alphabet symbols beside the
normal BWT output, the algorithm is able to caltellaontext information of the original BWT
input string during the encoding and decoding ef BWT output string similar to MO3 [62].

More details of post BWT stages are discussed Qgral, Bell and Mukherjee in 2008 [42].

4. Results

4.1 Compression Rates

For the comparison of compression rates, the fafigwlgorithms are itemized:

» GZIP93-V1.2.4 with option -9 for highest compressio from Jean-loup Gailly and Mark
Adler, based on LZ77 [63],

» BW94 - from Michael Burrows and David Wheeler, based oTB[1],

» F96- from Peter Fenwick, based on BWT [24],

» BS99- from Bernhard Balkenhol and Yuri Shtarkov, based®VT [16],

» DO02- from Sebastian Deorowicz, based on BWT [53],

» MTFO6 - from Jirgen Abel, described in section Move-Toffro

» [FO6 - from Jurgen Abel, described in section Inversioegiaencies,

» WFCO06- from Jirgen Abel, described in section Weighteshbency Count,

» [FC06- from Jurgen Abel, described in section IncremelRtabuency Count,

» MO3C - from Atsushi Komiya [56, 64], described in sectM03.

The corresponding files are derived from four ddfe file collections, all available at
http://www.data-compression.info/Corpardhe first three collections, the Calgary Corp6S]|

the Canterbury Corpus and the large Canterbury @oi§6] contain different file types and are the
most popular file sets for lossless compressiorchmarks. The last file collection, the Lukas 2D
16 Bit Medical Image Corpus [41], is a set of latg® dimensional 16 bit radiographs in TIF
format and represents the impact of different BT stages in the imaging field. Medical image
compression is an important field of lossless daimpression. Files of the Lukas 2D 16 Bit

Medical Image Corpus have typical sizes around 5 M@mpression rates are presented in bits per

-30 -

symbol (bps) for all algorithms.

For all files but the large files of the Lukas Casp the MO3 implementation achieves the best
compression rates, followed by WFC06 and IFCO6.l&aer files, especially for the large medical
image files of the Lukas Corpus, IFO6 achieves osintases the best results, followed by WFCO06
und IFC06. On average M03, WFCO06, IFC06 and IF@&irathe strongest results, but there is one
exception worth mentioning. The filkennedy.x1s, which is calledexcl by Fenwick [51],
obtains with M0O3 by far the best result, which @iblle as good as the results of WFCO06, IFC06
and IFO6. It seems that the context based methtd recursive intervals of MO3 offers a better
accommodation than the ranking schemes with indices

It is interesting to note, that the superioritytioé MO3 implementation becomes smaller with larger
files. Maybe the bit streams to encode inside tiiteopy coding stage, e.g. the different order-s bit
of a data stream could be arranged in separatest-ordroups so that more context information
could be exploited. The context information betwelea bit streams are small compared to the
context information of the symbols, but for lar@és their influence rises.

The last 5 columns of Table 17 present the resultéhe Lukas Corpus if the BWT input data is not
reversed for binary files as described in secti@si® Concepts. For all BWCA schemes and all
files, the results are worse than with context rewmg. The radiographs are image files with 16 bit
pixels. Their values are stored with the most $igamt byte first (big endian). Using the preceedin

context inside the BWT achieves about 5% bettarli®sn average for this type of file.

4.2 Compression and Decompression Times

Running time results are calculated as the avevageten runs measured in seconds on a 2.13 GHz
Pentium M with 2 GB RAM running under WINDOWS XPIIAO times including loading and
linking of the programs are included. Time varia@mong different runs were negligible.

In about 90% of all cases, the GZIP93 algorithmieaas the highest compression speed. For the
last 10%, GZIP is close behind MTF06, IFC06 and6IR@ith two exceptions. The files
kennedy.x1s andE.coli are compressed three times faster by MTF06, IF@6IBCO06 than

by GZIP93. Both files contain many repeating stsinghich are handled faster by a sorting scheme
like BWCA than by a dictionary scheme like LZ77.

For decompression, GZIP is always the fastest itgor on average about three times as fast as
MTFO06. IFCO06, which achieves a better compressate than MTFO06, is about 10% slower than
MTFO06. IF06 is about 10% slower on average thanOB=GM03, which obtains in most cases the
best compression rates, is up to ten times sldvear the other BWT based implementations.

-31 -

Table 14: Compression ratesin bps for the Calgary Corpus.
Best compression rates are printed in bold font

File GZIP93 BW9%4 F96 BS99 D02 MTFO06 IFO6 WFCO06 IFC06 MO03C
bi b 2.516 2.02 1.95 1.91 1.896 1.912 1.919 1.882 1.8871.829
book1 3.256 2.48 2.39 2.27 2.274 2.320 2.231 2.249 2.2572.199
book2 2.702 2.10 2.04 1.96 1.958 1.981 1.933 1.931 1.9411.881
geo 5.355 4.73 4.50 4.16 4.152 4.236 4.161 4.1054.098 4.165
news 3.072 2.56 2.50 2.42 2.409 2.449 2.405 2.380 2.4062.321
obj 1 3.839 3.88 3.87 3.73 3.695 3.765 3.892 3.676 3.712 3.710
obj 2 2.628 2.53 2.46 2.45 2414 2.423 2.487 2.394 2.4032.291
paper 1 2.792 2.52 2.46 241 2.403 2414 2.417 2.377 2.3862.335
paper 2 2.880 2.50 241 2.36 2.347 2.373 2.340 2.326 2.3362.276
pi c 0.816 0.79 0.77 0.72 0.717 0.748 0.709 0.706 0.722 0.712
progc 2.679 2.54 2.49 2.45 2431 2.454 2.473 2.413 2.4292.348
progl 1.807 1.75 1.72 1.68 1.670 1.683 1.703 1.655 1.6661.582
progp 1.812 1.74 1.70 1.68 1.672 1.665 1.719 1.654 1.6621.576
trans 1.611 1.52 1.50 1.46 1.452 1.446 1.506 1.430 1.4411.377
Avg. 2.697 2.40 2.34 2.26 2.249 2.276 2.278 2.227 2.239 2.186

Table 15: Compression ratesin bps for the Canterbury Corpus.
Best compression rates are printed in bold font

File GZIP93 MTFO06 IFO6 WFCO06 IFC06 MO3C
al i ce29. txt 2.849 2.192 2.148 2.149 2.152 2.093
asyoul i k. t xt 3.118 2.462 2.404 2.409 2.411 2372
cp. htm 2.594 2.400 2.436 2.353 2.372 2304
fields.c 2.249 2.062 2.173 2.060 2.067 2.001
granmmar. | sp 2.670 2.509 2.672 2.498 2.503 2.464
kennedy. x| s 1.579 0.620 1.034 0.816 0.978 0.444
| cet 10. t xt 2.704 1.940 1.892 1.893 1.900 1.841
pl rabnl2. t xt 3.229 2.336 2.253 2.272 2.275 2.220
pttS 0.816 0.748 0.709 0.706 0.722 0.712
sum 2.672 2.563 2.683 2.503 2.521 2451
xargs. 1 3.320 3.096 3.187 3.062 3.098 3.075

Avg. 2.527 2.084 2.145 2.066 2.091 1.998

-32 -

Table 16: Compression rates in bps for the large Canterbury Corpus.
Best compression rates are printed in bold font

File GZIP93 MTFO06 IFO6 WFCO06 [IFC06 MO03C
bi bl e. t xt 2.330 1.508 1.453 1.463 1.471 1.423
E. coli 2.244 1.989 1.964 1.954 1.973 2.017
wor | d192. t xt 2.337 1.333 1.309 1.298 1.309 1.259
Avg. 2.304 1.610 1.575 1572 1.584 1.566

Table 17 Compression rates in bps for the Lukas 2D 16 Bit Medical Image Cor pus.
The last 5 columns contain the results for a BWT with no context reversing (following context).
Best compression rates are printed in bold font

File GZIPS3 MTFO6 IF06 ~ WFCO6 IFCO6 M03C 100 1FO0 - WFCO6 — [FC00 o W03C
I'ukas_2d_16_breast _0 2.146 1.232 1.170 1.200 1.190 1.185 1.253 1.211 1.220 1.219 1.211
l'ukas_2d_16_breast_1 2.483 1.404 1.336 1.376 1.358 1.351 1.428 1.387 1.394 1.390 1.389
I'ukas_2d_16_f oot _0 2.865 1.392 1.349 1.371 1.356 1.351 1.412 1.389 1.406 1.383 1.373
l'ukas_2d_16_foot _1 3.850 1.869 1.823 1.830 1.824 1.832 1.981 1.957 2.031 1.945 1.902
| ukas_2d_16_hand_0 3.313 1.723 1.653 1.647 1.664 1.677 1.806 1.777 1.777 1.762 1.721
| ukas_2d_16_hand_1 3.273 1.629 1.566 1.557 1.573 1.584 1.717 1.698 1.693 1.676 1.630
| ukas_2d_16_head_0 2.221 1.124 1.083 1.091 1.092 1.093 1.134 1.110 1.110 1.108 1.113
I'ukas_2d_16_head_1 2.659 1.358 1.311 1.317 1.319 1.319 1.375 1.344 1.344 1.344 1.343
I ukas_2d_16_knee_0 3.170 1.513 1.462 1.459 1.469 1.473 1.585 1.556 1.604 1.545 1.515
l'ukas_2d_16_knee_1 3.370 1.628 1.573 1.582 1.579 1.589 1.700 1.670 1.728 1.659 1.629
| ukas_2d_16_l eg_0 2.967 1.593 1547 1.551 1.557 1.551 1.662 1.620 1.646 1.609 1.608
lukas_2d_16_leg_1 3.606 1.943 1.889 1.894 1.901 1.895 2.021 1.975 2.033 1.963 1.973
I ukas_2d_16_pelvis_0 4.642 2.755 2.624 2.643 2.676 2.666 2.746 2.641 2.643 2.675 2.679
l'ukas_2d_16_pel vis_1 4.424 2.497 2.386 2.390 2.427 2.410 2.563 2.475 2.482 2.488 2.481
I'ukas_2d_16_si nus_0 3.589 1.708 1.668 1.681 1.663 1.679 1.829 1.816 1.865 1.800 1.751
l'ukas_2d_16_si nus_1 3.641 1.760 1.718 1.720 1.714 1.728 1.882 1.868 1.907 1.851 1.808
I ukas_2d_16_spi ne_0 3.922 2444 2334 2.399 2.380 2.370 2.506 2.431 2.459 2.436 2.451
I ukas_2d_16_spi ne_1 3.899 2.484 2.365 2.372 2.407 2.385 2.514 2.424 2.421 2.434 2.438
lukas_2d_16_thorax_0 4.344 2.384 2.264 2.324 2.314 2.300 2.429 2.339 2.353 2.360 2.373
l'ukas_2d_16_t horax_1 4.020 2.198 2.107 2.110 2.142 2.133 2.248 2.190 2.209 2.194 2.205
Avg. 3.420 1.832 1.761 1.776 1.780 1.779 1.890 1.844 1.866 1.842 1.830

-33-

Table 18: Compression and decompression times in seconds for the Calgary Corpus.
Fastest times are printed in bold font

comp. comp. comp. comp. comp. comp. decp. decp. decp. decp. decp. decp.
File GZIP MTF IF WFC IFC M03C GZIP MTF IF WFC IFC M03C
93 06 06 06 06 93 06 06 06 06
bi b 0.02 0.06 0.07 0.10 0.07 0.20 0.02 0.05 0.05 0.08 0.05 0.12
book1 0.22 0.25 0.29 0.52 0.29 1.88 0.08 0.22 0.28 0.47 0.25 1.25
book?2 0.14 0.21 0.24 0.39 0.23 1.41 0.06 0.15 0.20 0.33 0.17 1.03
geo 0.09 0.11 0.11 0.40 0.11 0.27 0.02 0.08 0.08 0.37 0.08 0.14
news 0.08 0.17 0.19 0.34 0.20 0.83 0.03 0.11 0.14 0.27 0.13 0.50
obj 1 0.01 0.06 0.06 0.11 0.06 0.06 0.01 0.03 0.03 0.08 0.03 0.03
obj 2 0.08 0.13 0.16 0.32 0.14 0.53 0.02 0.08 0.13 0.29 0.10 0.31
paper 1 0.02 0.08 0.09 0.11 0.09 0.10 o0.01 0.05 0.06 0.06 0.05 0.06
paper 2 0.02 0.09 0.09 0.13 0.09 0.16 0.01 0.05 0.06 0.08 0.06 0.10
pic 0.20 0.13 0.14 0.19 0.13 5.28 0.02 0.09 0.11 0.16 0.09 0.99
progc 0.01 0.08 0.08 0.09 0.08 0.08 0.01 0.05 0.05 0.06 0.05 0.05
pr ogl 0.02 0.09 0.09 0.11 0.09 0.14 o0.01 0.05 0.05 0.07 0.05 0.08
pr ogp 0.02 0.08 0.08 0.09 0.08 0.11 o0.01 0.05 0.05 0.06 0.05 0.07
trans 0.02 0.09 0.09 0.11 0.09 0.19 o0.01 0.05 0.06 0.08 0.05 0.11
Sum 0.95 1.63 1.78 3.01 175 11.24 0.32 111 1.35 2.46 121 484
Table 19: Compression and decompression times in seconds for the Canterbury Corpus.
Fastest times are printed in bold font
comp. comp. comp. comp. comp. comp. decp. decp. decp. decp. decp. decp.
File GZIP MTF IF WFC IFC M03 GZIP MTF IF WFC IFC M03C
93 06 06 06 06 93 06 06 06 06
alice29. txt 0.03 0.08 0.09 0.13 0.09 0.30 0.02 0.05 0.06 0.11 0.06 0.17
asyoul i k. t xt 0.03 0.08 0.08 0.13 0.08 0.25 0.02 0.05 0.06 0.09 0.06 0.14
cp. htm 0.01 0.06 0.06 0.08 0.06 0.05 0.01 0.03 0.03 0.05 0.03 0.03
fields.c 0.01 0.08 0.08 0.08 0.08 0.02 0.01 0.03 0.03 0.03 0.03 0.02
granmmar. | sp 0.01 0.08 0.08 0.08 0.08 0.01 0.01 0.03 0.03 0.03 0.03 0.01
kennedy. x| s 1.06 0.35 033 2.98 0.38 2.03 0.08 0.25 0.27 2.87 0.28 0.89
| cet 10. t xt 0.09 0.17 0.19 0.30 0.19 0.94 0.04 0.11 0.14 0.23 0.13 0.70
pl rabnl2. t xt 0.16 0.20 0.23 0.37 0.23 1.10 0.05 0.14 0.19 0.31 0.17 0.66
ptt5 0.20 0.13 0.14 0.19 0.13 5.28 0.02 0.09 0.11 0.16 0.09 1.00
sum 0.02 0.06 0.06 0.11 0.07 0.08 0.01 0.05 0.06 0.09 0.05 0.05
xargs.1 0.01 0.08 0.08 0.08 0.08 0.01 0.01 0.04 0.05 0.05 0.04 0.01
Sum 1.63 1.37 1.42 4.53 1.47 10.07 0.28 0.87 1.03 4.02 0.97 3.68

-34 -

Table 20: Compression and decompression times in seconds for the large Canterbury Corpus.
Fastest times are printed in bold font

comp. comp. comp. comp. comp. comp. decp. decp. decp. decp. decp. decp.
File GzZIP MTF IF WFC IFC MO03C GZIP MTF IF WFC IFC MO03C
93 06 06 06 06 93 06 06 06
bi bl e. t xt 1.19 1.47 1.67 231 1.63 11.44 0.33 0.97 1.18 1.79 1.10 6.18
E. coli 6.54 191 2.51 3.26 2.25 12.31 041 1.49 1.56 2.80 1.81 6.11
wor | d192. t xt 0.50 0.78 0.86 1.28 0.86 6.38 0.20 0.56 0.70 1.05 0.64 3.48
Sum 8.23 4.16 5.04 6.85 474 3013 094 3.02 3.44 5.64 355 1577

Table 21: Compression and decompression times in seconds for the Lukas 2D 16 Bit Medical Image Corpus.
Fastest times are printed in bold font.

comp. comp. comp. comp. comp. comp. decp. decp. decp. decp. decp. decp.
File GZIP MTF IF WFC IFC M03C GZIP MTF IF WFC IFC M03C
93 06 06 06 06 93 06 06 06 06

| ukas_2d_16_breast_0 1.65 148 147 347 1.56 23.36 065 1.80 235 3.77 1.88 8.90
| ukas_2d_16_breast_1 114 1.56 158 3.90 1.67 22.16 0.70 180 237 4.10 1.88 7.02
| ukas_2d_16_foot 0O 113 1.37 2.09 2.59 1.66 1552 063 154 265 2.73 1.78 7.96
| ukas_2d_16_foot _1 0.89 1.26 1.62 2.50 1.41 11.02 056 1.22 1.84 242 1.32 5.58
| ukas_2d_16_hand_0 130 140 1.56 2.71 1.55 11.33 055 1.28 2.08 256 1.42 6.52
| ukas_2d_16_hand_1 120 141 1.58 2.66 1.56 1299 056 1.29 209 251 1.44 5.74
| ukas_2d_16_head_0 082 0.96 1.38 1.82 1.12 23.06 047 1.15 1.77 1.98 1.29 7.49
| ukas_2d_16_head_1 092 1.07 1.53 2.11 1.25 38.68 051 1.25 197 2.26 1.39 7.68
| ukas_2d_16_knee_0 095 1.30 1.49 2.50 1.45 12.89 059 1.27 202 245 1.40 6.85
| ukas_2d_16_knee_1 095 1.37 1.89 2.50 1.53 11.71 063 1.35 2.06 244 1.48 6.64
| ukas_2d_16_l eg_0 071 0.77 0.87 1.84 0.86 8.29 035 0.86 1.27 1.89 0.92 412
| ukas_2d_16_leg_1 051 0.70 0.78 1.66 0.77 589 031 0.73 1.10 166 0.78 3.27
lukas_2d_16_pelvis_0 152 216 3.17 475 253 15.78 091 2.29 3.86 4.80 2.60 9.01
lukas_2d_16_pelvis_1 130 2.05 239 542 219 14.09 087 2.12 277 559 220 7.09
| ukas_2d_16_sinus_0O 109 241 278 3.63 255 10.73 057 1.21 185 247 1.33 5.67
| ukas_2d_16_sinus_1 128 1.39 1.55 2.62 1.53 11.14 054 1.18 186 241 1.28 5.98
| ukas_2d_16_spi ne_0 071 1.12 1.16 291 1.20 780 049 1.09 1.59 2.86 1.16 4.50
| ukas_2d_16_spine_1 0.75 1.15 1.55 2.59 1.28 8.41 048 1.13 1.77 253 1.24 4.52
lukas_2d_16_thorax_0 147 234 242 6.16 2.50 16.38 097 236 3.37 6.28 250 7.87
lukas_2d_16_thorax_1 111 1.69 197 4.08 1.80 12.66 0.76 1.82 236 4.19 1.89 6.70

Sum 2140 2896 3483 6242 3197 29389 1210 2874 4300 6190 3118 12911

- 35 -
5. Conclusions

The Burrows-Wheeler Compression Algorithm (BWCA)hi@wes good compression rates
combined with high speed. Within this field, thespdWT stages, i.e. those that follow the
Burrows-Wheeler Transformation (BWT) stage, plagemtral role in order to realize the best
possible results. Implementations of post BWT Satypically consist of three parts: a Global
Structure Transformation (GST), a Run Length EnegdRLE) stage and an Entropy Coder (EC)
stage. Context based approaches often include $fesdd EC stage and skip the RLE stage.

This paper compares the function and results ¢reiht post BWT stages: Move-To-Front (MTF),
Inversion Frequencies (IF), Weighted Frequency €divFC), Incremental Frequency Count
(IFC) and MO03. All versions except the last oneénplaced an RLE stage in front of the post BWT
stage as shown in Figure 3 and all used the impnewnés described in the respective sections.

For the Calgary, Canterbury and large Canterburgara, the M03 based BWCA achieves the best
compression rates. The IFC variant of the BWCAefig good compression rates for all sizes of
the files, has a higher throughput than the MO2O8&WCA and is almost as fast as an MTF based
BWCA.

For large 16 bit medical images with big endiae, ith based BWCA achieves the best compression
rates with context reversing, together with a matkespeed.

At this point of time, it is difficult to predicf further improvements to recency ranking based GST
algorithms will give better compression rates orethler the development of context based
approaches will lead to better compression ratesanly case, the speed of the context based
approaches must be improved in order to be comfgnaith other BWCA and PPM based

implementations.

6. Acknowledgements

Special thanks go to William Teahan, who provideteesive comments on this work, and to
Michael Maniscalco, who discussed the details ef M03 algorithm. The RLE discussions with
Yaakov Gringeler and several remarks by Sebastesrdvicz, Szymon Grabowski, Uwe Herklotz
and Vadim Yoockin as well as the M03 implementatidmtsushi Komiya are appreciated very

much.

7. References

[1] Burrows, M, Wheeler, D. A Block-Sorting Loss¢eBata Compression Algorithm. Technical
report, Digital Equipment Corporation, Palo Altal@ornia, 1994, URL (March 2006):
http://citeseer.ist.psu.edu/76182.html.

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

- 36 -

Anderson, A, Nilsson, S. A New Efficient Radbort. 35th Symposium on Foundations of
Computer Science, 73421, 1994.

Anderson, A, Nilsson, S. Implementing Radixsditte ACM Journal of Experimental
Algorithmics, Volume 3, Article 7, 1998.

Fenwick, P. Block Sorting Text Compression. ACS5, Melbourne, 1996.

Kurtz, S. Reducing the Space Requirement ofistifees. Software — Practice and
Experience, 29(13), 1149-1171, 1999.

Kurtz, S, Balkenhol, B. Space Efficient Lineeime Computation of the Burrows and
Wheeler-Transformation. In Numbers, Information &wamplexity. I. Althofer, N. Cai, G.
Dueck, L. Khachatrian, M. Pinsker, A. Sarkozy, le@éner, and Z. Zhang, Eds. Kluwer
Academic Publishers, 375-383, 2000.

Sadakane, K. Improvements of Speed and Perfocenaf Data Compression Based on
Dictionary and Context Similarity. Master's thefdgpartment of Information Science,
Faculty of Science, University of Tokyo, Japan, 99RL (March 2006):
http://citeseer.ist.psu.edu/sadakane97improvenigmnts.

Sadakane, K. Unifying Text Search and Compuaessi Suffix Sorting, Block Sorting and
Suffix Arrays, Ph.D. Dissertation, Department dioimation Science, Faculty of Science,
University of Tokyo, 2000, URL (March 2006):
http://citeseer.ist.psu.edu/sadakane00unifying.html

Larsson, N. Structures of String Matching arat&®Compression. PhD thesis, Department of
Computer Science, Lund University, Sweden, 1999\ (Rarch 2006):
http://citeseer.ist.psu.edu/larsson99structures.htm

Seward, J. On the performance of BWT sortilyggpathms. Proceedings of the IEEE Data
Compression Conference 2000, Snowbird, Utah, JeSémd M. Cohn, Eds., 173-182, 2000.

Itoh, H, Tanaka, H. An Efficient Method for Memory Construction of Suffix Arrays. Proc.
IEEE String Processing and Information Retrievahgsium (SPIRE'99), 81-88, September
1999.

Kao, T. Improving Suffix-Array Construction gbrithms with Applications, Master's thesis,
Gunma University, Kiryu, 376—-8515, Japan, 2001, YRlarch 2006):
http://citeseer.ist.psu.edu/692550.html.

Manzini, G, Ferragina, P. Engineering a Ligaight Suffix Array Construction Algorithm.
Lecture Notes in Computer Science, Springer VeNadume 2461, 698710, 2002.

Karkkainen, J, Sanders, P. Simple Linear Wawikfix Array Construction. 30th International
Colloquium on Automata, Languages and Programmmomber 2719 in LNCS, 943-955.
Springer, 2003.

Schindler, M. A Fast Block-sorting Algorithmorflossless Data Compression. In Proceedings
of the IEEE Data Compression Conference 1997, Smdywbtah, J. Storer and M. Cohn,
Eds., 469, 1997.

Balkenhol, B, Shtarkov, Y. One attempt of angyession algorithm using the BWT. SFB343:
Discrete Structures in Mathematics, Falculty of Mahatics, University of Bielefeld,
Preprint, 99-133, 1999, URL (March 2006): httptéseer.ist.psu.edu/balkenhol99one.html.

Arnavut, Z, Magliveras, S. Block Sorting andr@pression. Proceedings of the IEEE Data
Compression Conference 1997, Snowbird, Utah, JeSémd M. Cohn, Eds. 181-190, 1997.

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

- 37 -

Arnavut, Z. Move-to-Front and Inversion Codingin Proceedings of the IEEE Data
Compression Conference 2000, Snowbird, Utah, JeSémd M. Cohn, Eds. 193, 2000.

Arnavut, Z. Inversion Coder. The Computer Jalir47(1), 46-57, 2004.

Chapin, B. Switching Between Two On-line Ligpdate Algorithms for Higher Compression
of Burrows-Wheeler Transformed Data. In Proceedofghe IEEE Data Compression
Conference 2000, Snowbird, Utah, J. Storer and &hnCEds. 183-192, 2000.

Deorowicz, S. Improvements to Burrows-Whe&empression Algorithm. Software —
Practice and Experience, 30(13), 1465-1483, 2000.

Abel, J. A fast and efficient post BWT-stage the Burrows-Wheeler Compression
Algorithm. Proceedings of the IEEE Data Compress$ionference 2005, Snowbird, Utah, J.
Storer and M. Cohn, Eds., 449, 2005.

Abel, J. Incremental frequency count - a @&tT-stage for the Burrows-Wheeler
compression algorithm. Software — Practice and Bepee, 37(3), 247-265, 2007.

Fenwick, P. The Burrows-Wheeler TransformBbock Sorting Text Compression --
Principles and Improvements. The Computer JouB®4b), 731-740, 1996.

Fenwick, P. Block-Sorting Text Compressionndt Report. The University of Auckland,
New Zealand, Technical Report 130; 1996.

Maniscalco, M. comp.compression group.
http://groups.google.com/group/comp.compressiombeon thread/thread/7555a0bc297d6691/
460f529474809a92?q=#460f529474809a92. 2004.

Maniscalco, M. A solution for context baseddksort compression - The M03 algorithm.
http://www.michael-maniscalco.com/papers/m03.@2004.

Maniscalco, M. The M03 algorithm. Private aspondence. 2009.

Grabowski, S. Text Preprocessing for Burrowkéaler Block-Sorting Compression. In VI
Konferencja Sieci i Systemy Informatyczne - TeoRe&jekty, Wdrozenia, Lodz, Poland,
1999.

Kruse, H, Mukherjee, A. Improving Text Compsem Ratios with the Burrows-Wheeler
Transform. In Proceedings of the IEEE Data CompoaesSonference 1999, Snowbird, Utah,
J. Storer and M. Cohn, Eds. 536, 1999.

Franceschini, R, Kruse, H, Zhang, N, IgbalMRikherjee, A. Lossless, Reversible
Transformations that Improve Text Compression RBatoject paper, University of Central
Florida, USA, 2000.

Awan, F, Zhang, N, Motgi, N, Igbal, R, Mukheg, A. LIPT: A reversible lossless text
transform to improve compression performance. btedings of the IEEE Data
Compression Conference 2001, Snowbird, Utah, JeSamd M. Cohn, Eds. 481, 2001.

Isal, R, Moffat, A. Parsing Strategies for BWCbmpression. In Proceedings of the IEEE Data
Compression Conference 2001, Snowbird, Utah, Je6&md M. Cohn, Eds. 42938, 2001.

Isal, R, Moffat, A, Ngai, A. Enhanced Word-BaksBlock-Sorting Text Compression. In
Proceedings of the twenty-fifth Australasian coaefere on Computer science, Volume 4,
January 2002, 124938, 2002.

Abel, J, Teahan, W. Universal Text-Preproagggor Data Compression. IEEE Transactions
on Computers, 54(5), 497-507, 2005.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

- 38 -

Abel, J. Record Preprocessing for Data Congpoes In Proceedings of the IEEE Data
Compression Conference 2004, Snowbird, Utah, JeSémd M. Cohn, Eds. 521, 2004.

Balkenhol, B, Kurtz, S. Universal Data Comwies Based on the Burrows-Wheeler
Transformation: Theory and Practice. IEEE Transastion Computers, 49(10), 164353,
1998.

Bentley, J, Sleator, D, Tarjan, R, Wei, V.dchlly adaptive data compression scheme.
Communications of the ACM, 29, 320-330, 1986.

Cleary, J, Witten, |. Data compression usidgjtive coding and partial string matching.
IEEE Transactions on Communications, 32(4), 396;--4034.

Sayood, K. (Editor) Lossless Compression Hadb Academic Press, 2003.

Abel, J. Lukas 2D 16 Bit Medical Image Corpud set of two dimensional 16 bit
radiographs in TIF format. URL (March 2006):
http://www.data-compression.info/Corpora/LukasCa¥pu

Adjeroh, D, Bell, T, Mukherjee, A. The Burrow§heeler Transform: Data Compression,
Suffix Arrays, and Pattern Matching. Springer Newrk; 2008.

Maniscalo, M. A Run Length Encoding Scheme Blarck Sort Transformed Data. Technical
paper, 2000, URL (March 2006):
http://www.geocities.com/m99datacompression/pagerdé.html.

Maniscalo, M. A Second Modified Run Length Bding Scheme For Block Sort
Transformed Data. Technical paper, 2001, URL (M2@06):
http://www.geocities.com/m99datacompression/pagdegshtml.

Chapin, B. Higher Compression from the Burrewkeeler Transform with new Algorithms
for the List Update Problem, Ph.D. Dissertationjvérsity of North Texas, 2001.

Gringeler, Y. Private correspondence, 2002.

Abel, J. Advanced blocksorting compressor (ABZD03,
URL (March 2006): http://data-compression.info/ABC/

Nelson, M, Galilly, JL. The Data CompressionoRpSecond Edition, M&T Books, New
York, 113-136, 1996.

Elias, P. Interval and Recency Rank Sourceil@pdwo On-Line Adaptive Variable-Length
Schemes. IEEE Transactions on Information Theooy, ¥1 (2), 194203, 1987.

Balkenhol, B, Kurtz, S, Shtarkov, Y M. Modiiions of the Burrows and Wheeler Data
Compression Algorithm. Proceedings of the IEEE Mawanpression Conference 1999,
Snowbird, Utah, J. Storer and M. Cohn, Eds. 188:-19%9.

Fenwick, P. Burrows Wheeler Compression withrigble Length Integer Codes. Software —
Practice and Experience, 32(13), 1307-1316, 2002.

Binder, E. Distance Coder, Usenet group: cammpression, 2000, URL (March 2006):
http://groups.google.com/groups?selm=390B6254.DADE3640T-Online.de.

Deorowicz, S. Second step algorithms in ther®us-Wheeler compression algorithm.
Software — Practice and Experience, 32(2), 99-2002.

Ferragina, P, Giancarlo, R, Manzini, G. Theria virtues of wavelet trees. International
Colloquium on Automata, Languages and Programmi@4L(P), Lecture Notes in Computer
Science vol. 4051, Venezia, 561-572, 2006.

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

-39-

Abel, J. Improvements to the Burrows-Wheelempression algorithm: after BWT stages.
http://www.data-compression.info/JuergenAbel/PregfPreprint_After BWT _Stages.pdf,
2003.

Komiya, A. m03c — Compression program basedn®3. http://. 2009.

Gagie, T, Mancini, G. Move-to-Front, DistanCeding, and Inversion Frequencies Revisited.
Lecture Notes in Computer Science vol. 4580, 7128D,/.

Wirth, A, Moffat, A. Can We Do without Ranks Burrows Wheeler Transform
Compression?. Proceedings of the IEEE Data Conipre€onference 2001, Snowbird,
Utah, J. Storer and M. Cohn, Eds. 419, 2001.

Fenwick, P. Burrows—Wheeler compression: Rples and reflections. Theoretical Computer
Science, vol. 387(3), 200-219, 2007.

Ferragina, P, Giancarlo, R, Manzini, G. Theylaeering of a Compression Boosting Library:
Theory vs Practice in BWT Compression. Lecture NateComputer Science vol. 4168, 756-
767, 2006.

Foschini, L, Grossiy, R, Guptaz, A, Vitter,S, Fast Compression with a Static Model in
High-Order Entropy. In Proceedings of the IEEE Datanpression Conference 2004,
Snowbird, Utah, J. Storer and M. Cohn, Eds. 624200

Deorowicz, S. Context exhumation after themws-Wheeler transform. Information
Processing Letters, vol. 95, 313-320, 2005.

Galilly, JL. GZIP — The data compression progra Edition 1.2.4., 1993, URL (March 2006):
http://www.gzip.org.

[64] Komiya, A. m0O3c. Private correspondence. 2009.

[65]

[66]

Bell, T, Witten, I, Cleary, J. Modeling for XeCompression. ACM Computing Surveys Vol.
21, 557-591, 1989.

Arnold R, Bell, T. A Corpus for the Evaluatiaf Lossless Compression Algorithms.
Proceedings of the IEEE Data Compression Confer&8@&, Snowbird, Utah, J. Storer and
M. Cohn, Eds. 201-210, 1997.

