
Abstract  — The decomposing of  stock market
prices  into  a  set  of  sub  waves  with  different
frequencies  by  the  discrete  Fourier  transform
provides unstable and unsatisfying results.  The
Empirical  Mode  Decomposition  (EMD)  is  a
decomposing  algorithm  which  uses  sub  waves
with  amplitude  modulation  and  frequency
modulation,  leading  to  better  adapted  analyze
results.  As  a  non  causal  algorithm  the  EMD
bears  challenges  for  the  technical  analysis.
Nevertheless,  the  EMD  provides  valuable
information  about  market  data.  This  paper
presents  the  EMD  algorithm  and  its  features
within the context of technical analysis.

Index Terms—EMD, technical analysis,  spectral  analysis,
price sequence

I.INTRODUCTION

tock  market  prices  are  time  discrete  signals
which are nonlinear and non stationary. One of

the most important models in technical analysis is
the wave model of the market [1]. The wave model
assumes that  the final  market  price is  the sum of
several  sub  oscillating  waves  and  a  final  trend
component, which is not oscillating. The sub waves
are  also  price  sequences  which  oscillate  with
different period lengths. This model can be exactly
calculated  by  using  digital  signal  processing
techniques [1, 2].

S

The decomposing of the price sequence into a set of
sub waves with different frequencies by the discrete
Fourier  transform,  which  is  the  most  common
spectral  analysis  transform,  e.g.  by  the  Goertzel
algorithm  [3],  provides  only  unsatisfying  results.
The  main  problem  is  that  the  discrete  Fourier
transform  uses  sine  waves  with  constant
frequencies, which are not optimal in modeling the
price waves of the market, as the frequencies of the
sub waves are not constant but change permanently,
leading to harmonic waves which disappear within
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less  than  a  period  in  the  output  of  the  Fourier
transform.  Furthermore,  the  Fourier  transform
assumes that the input signal is linear and stationary
[4], but stock price sequences are neither linear nor
stationary.  The  Empirical  mode  decomposition
(EMD) is an algorithm which operates on the local
time scale of the data and can handle nonlinear and
non stationary data [5]. Their components consist of
oscillating waves with slightly changing frequencies
and  changing  amplitudes,  which  are  more
applicative  in  modeling  the  price  waves.
Unfortunately, the EMD is a non causal algorithm,
which  causes  problems  when  used  for  technical
analysis. Subsequently the algorithm of the EMD is
explained, afterwards the properties, advantages and
disadvantages  of  the  EMD  within  the  context  of
technical analysis are unveiled.

II. THE EMD ALGORITHM

The  empirical  mode  decomposition  (EMD)  is  an
algorithm, which dissects a price sequence x(t) into
a  number  of  sub  waves  plus  a  final  residuum
between the start  of the price sequence  ts and the
end of the price sequence at  te. The sub waves are
called Intrinsic Mode Functions (IMF), which have
slightly  changing  frequencies  and  changing
amplitudes.  The  final  residuum  FR is  non
oscillating.
Therefore,  the  price  sequence  x(t) can  be
constructed by the sum of the IMFi plus FR:

x (t )=∑
i= 0

n−1

IMF i( t )+FR
(1)

The EMD algorithm is described in detail in several
publications  [5,  6,  7],  therefore  here  a  brief
description  from  a  programmer's  perspective  is
given. The algorithm works top/down, and has an
outer and an inner loop. It starts the outer loop with
the  input  signal  as  the  starting  signal.  From this
signal the first IMF, called IMF0, is calculated. Then
the algorithm continues with the difference of the
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former signal minus  IMF0 as the new signal. This
outer loop is  continued until  the difference  is  not
oscillating any more, id est the number of maxima
or the number of minima is smaller than 2.
The inner loop calculates the IMF, which is called
sifting  process.  The  sifting  process  calculates  the
local  maxima and the local  minima of the signal.
Next, a cubic spline which uses the local maxima as
its knots is calculated and used as the upper part of
an  envelope.  Then  a  cubic  spline  which  uses  the
local minima as its knots is calculated and used as
the lower part of the envelope. The middle of the
envelope  is  defined  as  the  mean  signal.  The
boundary conditions at  the beginning of the price
sequence  ts and at the end of the price sequence  te

need a special  treatment.  At  the  border  the  cubic
spline is not restricted by any more knots so it tends
to  raise  or  decrease  quite  strongly.  In  order  to
achieve  a  better  alignment,  the  last  two  knots  at
each border of the spline are mirrored behind the
border. This way, the route of the spline shows a

more  realistic  behavior.  Finally  the  difference
between the signal and the mean is used as the new
signal  and  the  inner  loop  is  repeated  until  the
number of maxima plus the number of minima is
smaller or equal than the number of zero crossings
of the signal.  This condition ensures that between
two zero crossings are only one maximum or one
minimum  respectively,  which  is  important  as  the
IMF should be an orthogonal signal [5]. The second
condition of the inner loop requests that the average
mean of the signal is zero, id est the signal has no
non zero trend part left, which is also important for
an  orthogonal  signal  [5].  Figure  1 lists  the
simplified algorithm as a structured program. Note
that  the  variables  Input_Signal,  Signal,  Mean,
Local_Maxima  etc.  are  series,  id  est  arrays  of
numbers and not single numbers. Figure 2 displays
the first mean (red line) together with the envelopes
(blue  lines)  and  the  original  price  sequence  x(t)
(black line).  Figure 2 until 7 are all calculated for
the same time interval on the x-axis on a daily price
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Figure 3: IMF0 based on DOW-JONES

{ Initializing }
Signal := Input_Signal;

{ Calculate until final residuum is reached }
I := 0;
While (Signal is oscillating) do
  Begin { While }
    { Save old signal }
    Temp_Signal := Signal;

    { Sifting loop }
    While (Signal is oscillating) and 
   (Number_of_Maxima (Signal) + Number_of_Maxima (Signal) >
    Number_of_Zero_Crossings (Signal) + 1) and
    (Sum (Signal) > Threshold) do
      Begin { While }
        Local_Maxima := Calculate_Local_Maxima (Signal);
        Local_Minima := Calculate_Local_Minima (Signal);

        Maxima_Signal := Calculate_Cubic_Splines (Local_Maxima);
        Minima_Signal := Calculate_Cubic_Splines (Local_Minima);

        Mean := (Maxima_Signal - Minima_Signal) / 2;

        Signal := Signal - Mean;
      End; { While }

    { Save IMF }
    IMF (I) := Signal;

    Signal := Temp_Signal - Signal;
    I := I + 1;
  End; { While }

{ Save FR }
FR := Signal;

Figure 1: EMD algorithm

Figure 2: First mean with envelope based on DOW-JONES
(signal: black, envelope: blue, mean: red)



frame. In  Figure 3 IMF0 is drawn as a green line.
Note that this IMF has a short period as it is the first
IMF. IMF1 (red), IMF2 (green) and IMF3 (blue) are
shown in  Figure 4.  The higher IMFs have longer
periods and get smoother than lower IMFs. For all
IMFs  the  amplitude  is  not  constant  (amplitude
modulation)  and  the  period  length  is  changing
slightly (frequency modulation). In Figure 5 mean1

(red), mean2 (green) and mean3 (blue) are displayed.
All means render the peak in May 2015 very well,
which is an effect of the approximation process, by
taking all  prices into account, and not only prices
before May 2015. 

III. PROPERTIES OF EMD 
IN THE CONTEXT OF TECHNICAL ANALYSIS

A. Computational Complexity

Most indicators of the technical analysis [8] have a
computational  time complexity  of  O(n);  examples
are:

- standard (arithmetic) moving average,
- the exponential moving average,
- low, high and band-pass filters,
- MACD (Moving Average Convergence/Diverg.).
Some have a complexity of  O(n*m) with  m equals
the span of an interval for example for the standard
deviation  like  Bollinger  Bands  [8].  The  EMD
algorithm  has  a  complexity  of  O(n2*p*q) with  p
equals  the  number  of  IMFs  (outer  loop)  and  q
equals the number of iterations of the sifting process
(inner loop). The quadratic factor  n2 is a result  of
the  spline  interpolation  [9].  This  complexity  has
consequences for the trading, as depending on the
number  of  prices  inside  the  price  sequence  the
calculation of the EMD might need several seconds
to be calculated. If the EMD is used for real time
trading,  where  several  price  signals  can  occur
within  a  second,  the  system  might  hang  as  the
calculation for one new price tick need to calculate
all IMFs again and this might take longer than the
left over time until the next price tick arrives. If the
EMD is used for longer time frames like days or
weeks,  the  time  for  calculation  is  usually  not  a
problem.
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Figure 4: IMF1 (red), IMF2 (green) and IMF3 (blue) 
based on DOW-JONES between 18.02.2015 and 03.06.2015

Figure 5: Mean1 (red), Mean2 (green) and Mean3 (blue) 
based on DOW-JONES between 18.02.2015 and 03.06.2015
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Figure 6 (a): Price sequence DOW-JONES

Figure 6 (b): IMF3 between 18.02.2015 and 20.05.2015

Figure 6 (c): IMF3 between 18.02.2015 and 21.05.2015

Figure 6 (d): IMF3 between 18.02.2015 and 22.05.2015

Figure 7 (a): Price sequence DOW-JONES

Figure 7 (b): IMF2 and IMF3 between 18.02 and 28.04.2015

Figure 7 (c): IMF2 and IMF3 between 18.02 and 29.04.2015

Figure 7 (d): IMF2 and IMF3 between 18.02 and 30.04.2015



B. Consistency of results

The  basis  of  the  EMD  is  an  approximation
procedure.  Since  all  prices  of  the  sequence  are
taking into account for the approximation and since
the mirrored prices at the right boundary, which is
moving one point to the right with every new price,
are  replaced  by the  new prices,  the  graph of  the
IMFs can change not only for the points at the right
boundary but for the whole price sequence.  Figure
6 presents the change of IMF3 for three consecutive
prices  between  20.05.2018  and  22.05.2015.  At
Figure 6 (a) the price sequence is drawn. Figure 6
(b) contains  IMF3 on  20.05.2015.  The  graph  of
IMF3 for  the  next  day  is  shown in  Figure  6  (c).
There  is  only  a  small  difference  in  the  shape  of
IMF3. One day later, on 21.05.2015 in Figure 6 (d),
the graph of  IMF3 changes noticeably on the right
border. Note that not only the values of the last few
days  but  about  all  values  for  the  last  two  month
have changed.  Figure 7 (a) -  (d) reveals  an even
more drastic example for  IMF2 and  IMF3 between
28.04.2015  and  30.04.2015.  Between  28.04.2015
and 29.04.2015  IMF3 changes its values for about
one month and  IMF2 changes its values for about
two months. The next day on 30.04.2015 in Figure
7  (d) about  all  values  of  IMF2 and  IMF3 have
changed for the last four months. But not only the
amplitudes  have  changed  but  also  the  number  of
maxima  and  minima.  On  Figure  7  (c) for  the
29.04.2015, IMF3 has two maxima and one minima.
One  day  later  on  Figure  7  (d),  IMF3 has  three
maxima  and  two  minima,  which  means  that  the
frequency of  IMF3 has changed. If  entry and exit
signals are calculated based on the graph of  IMF2

and  IMF3,  this  signals  would  have  changed
vigorously too. Therefore, the consistency of IMFs

signals between two consecutive points of time is
not  ensured,  the  graph of  the IMFs can  be  much
different for two consecutive points of time.

C. Frequencies

Table  1 shows  the  period  length,  the  reciprocal
value of the frequency, for different IMFs and for
different  price  series.  In  technical  analysis  the
period  length  is  more  widely  used  than  the
frequency value.  The second column displays  the
period lengths for the Dow Jones Industrial Average
(DOW-JONES)  for  daily  time  frames  between
01.01.2014  and  31.12.2017.  The  next  column
contains  the  period  values  for  the  German  DAX
between 2014 and 2017 in daily time frames. The
fourth column implicates the period length for the
DOW-JONES between 2014 and 2017 for  hourly
time frames and the last column includes the results
for  the  hourly  time  frames  of  the  DAX  between
2014 and 2017. Even though the price sequence of
the DOW-JONES and the DAX are quite different
between 2014 and 2017, the period lengths of the
IMFs for the daily time frames as well as the period
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IMF
DOW

JONES
DAILY

DAX
DAILY

DOW
JONES
HOURLY

DAX
HOURLY

0 3 3 3 3
1 7 7 6 6
2 16 15 11 11
3 33 35 21 21
4 83 89 39 42
5 208 186 74 97
6 - - 163 215
7 - - 320 478

Table 1: Average period lengths of the IMFs 
for the DOW-JONES and DAX from 2014 until 2017

for daily and for hourly time frames

Figure 8: Price sequence DOW-JONES for 2017

Figure 9: IMF1 (red), IMF2 (green) and IMF3 (blue) 
based on DOW-JONES in 2017



length of the hourly time frames are quite similar.
The quotient  IMFi/IMFi-1 between two consecutive
IMFs is between 1.9 and 2.5. For daily time frames
the quotients are a little bit larger on average than
for the hourly time frames.

D. Number of IMFs

Since the quotient between two consecutive IMFs is
on  average  around  2.3  and  since  the  first  period
length starts with 3, the number of IMFs for each
price sequence depends mainly on the size of the
sequence, id est on the number of prices. The daily
time frames from 2014 to 2017 contain about 1,000
prices, which makes for 6 IMFs, whereas the hourly
time  frames  from  2014  to  2017  include  about
17,000 prices and this causes 8 IMFs. If the interval
size would have been expanded or the time frame
reduced,  both leading to  more  prices,  more  IMFs
would  emerge.  On  the  other  side,  for  a  reduced
interval or a larger time frame, meaning less prices,
the number of IMFs would decline.

E. Amplitudes

The daily DOW-JONES price sequence for 2017 is
depicted  in  Figure  8.  Figure  9 portrays  the
amplitudes  of  IMF1 (red),  IMF2 (green) and  IMF3

(blue)  for  the  daily  DOW-JONES  in  2017.  The
image is similar to  Figure 4 but for a larger time
interval. Again, the amplitudes for each IMF are not
constant  but  change  from  period  to  period.  On
average  IMF3 has  a  larger  amplitude  than  IMF2,
which  has  a  larger  amplitude  than  IMF1.  Table  2
reveals  the  average  amplitudes  for  the  DOW-
JONES  and  the  DAX  between  01.01.2014  and
31.12.2017  for  daily  and  hourly  time  frames.
Similar to the Dow Theory, were the slower waves

are the main waves (main movement), which have
larger  amplitudes  than  the  faster  waves  (medium
and  short  swing)  [10],  each  IMFi has  a  larger
amplitude  than  its  predecessor  IMFi-1 for  both
markets  and  for  both  time  frames.  Again  the
similarity  of  the average  amplitude  sizes  between
DOW-JONES and DAX for the daily time frame as
well as for the hourly time frame is striking. For the
daily  DOW-JONES two  IMFs  are  eminent,  since
the amplitude for this IMF and the amplitude of its
smaller predecessor have a greater quotient than on
average:  IMF2 and  IMF4.  For  the  daily  DAX the
major  IMFs  are  IMF2 and  IMF5.  For  the  hourly
DOW-JONES the major IMF changes to  IMF7 and
for the hourly DAX the major IMFs are  IMF4 and
IMF6.

IV. USING EMD FOR TRADING

A. Disadvantages of EMD for trading

As already mentioned above, the IMF signals can
change  considerably  between  two  consecutive
points of time. The value of IMFi at time t0 with ts <
t0 < te not only depends on x(t) for all t <= t0 but also
on x(t) with t >  t0. Therefore the EMD indicator is
not a causal indicator. A non causal indicator causes
problems when used for real time trading, as trading
signals based on the indicator in the past tends to
jump from one place to another  place in the past
between two consecutive points of time. Therefore a
non causal indicator can not be used for back tests
as  it  disturbs  the  results  of  the  back  test.  Some
analysts used EMD for back-testing and achieved a
percentage  for  winning  trades  to  loosing  trades
between 90% to 100% [6] by simply opening a long
trade  when  the  IMF  has  a  local  minimum  and
closing  the  trade  when  the  IMF  reaches  a  local
maximum.  These  results  should  be  treated  with
caution as the final positions of the local maximums
and minimum are not fixed inside the sequence of
prices  but  can  change  with  every  new  price.
Furthermore,  it  is  doubtful  to  use  the  IMFs  for
predicting  future  price  development  by  using
forward  projections  of  the  IMFs  as  damped
harmonic oscillations [7] as the IMFs values on the
end of  the  price  sequence  at  te change  and jump
much stronger than IMF values in the middle or at
the  beginning  of  the  sequence  between  two
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IMF
DOW

JONES
DAILY

DAX
DAILY

DOW
JONES
HOURLY

DAX
HOURLY

0 119 114 24 24
1 129 138 28 28
2 238 230 39 37
3 278 339 52 51
4 634 437 72 83
5 755 764 103 124
6 - - 148 203
7 - - 225 263

Table 2: Average amplitudes of the IMFs 
for the DOW-JONES and DAX from 2014 until 2017

for daily and for hourly time frames



consecutive  points  of  time.  Therefore,  the  EMD
should  be  used  with  care  for  generating  trading
signals,  back  tests  or  predicting  future  price
development.

B. Advantages of EMD for trading

Despite  the  fact  that  the  EMD  has  many
disadvantages for real time trading mainly because
of the missing causality,  it  offers some properties
which are very useful for the technical analysis. The
EMD  produces  a  spectral  decomposition  of  the
market price sequence into set of sub waves, which
is  much  more  appropriate  for  market  prices  than
spectral decompositions from Fourier transform [4],
Goertzel  algorithm  [3],  MESA  [11]  or
Autocorrelation  [12].  The  main  difference  of  the
results  between these algorithms  and the EMD is
that the sub waves of the EMD have an amplitude
modulation  and  a  frequency  modulation.  The  sub
waves from the EMD start at the beginning of the
price  sequence  at  ts and  go  through  the  whole
interval  until  the end at  te.  The sub waves of the
other  spectral  algorithms  have  only  a  very  short
length, many times the sub wave disappears within
one period length,  because of the fixed amplitude
and  frequency.  Therefore  the  analysis  by  EMD
produces  a  more  natural  and appropriate  way for
market  prices.  Two  important  properties  can  be
harvested by the EMD: the average period length of
the sub waves and the average amplitude of these
sub waves. This information allows to determine the
major sub waves of the price sequence. These sub
waves are quite consistent and their average period
lengths as well as their average amplitudes change
only  slightly  between  two  consecutive  points  of
time.  For  real  time trading,  band-pass  filters  with
the period length of the major sub waves, calculated
by the EMD, can be used in order to get consistent
and causal trading signals.

V. CONCLUSION

The  empirical  mode  decomposition  (EMD)
dismantles  the  stock  market  price  into  a  set  of
intrinsic  mode  functions  (IMF),  each  of  which
having  an  amplitude  modulation  and  a  frequency
modulation.  As  a  non  causal  indicator  the  EMD
need to be used with caution if used for generating
trading  signals,  back  tests  or  predicting  future

prices.  The  main  advantage  of  the  EMD  in  the
context of technical analysis is the calculation of the
period length and the amplitudes of the major sub
waves, which can not be achieved by the standard
spectral  algorithms  using  fixed  frequencies  and
amplitudes. These properties promotes the EMD to
a  valuable  and  exceptional  tool  in  the  technical
analysis.
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