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Abstract

In this paper, we provide a lossless Burrows-Wheeler compression algorithm using
Fountain codes. Our algorithm is based on the Burrows-Wheeler Transform (BWT), an
invertible permutation transform for lossless data compression. The algorithm proceeds
as following. First, we use the BWT. Second, we reduce the number of symbols by
applying a Run Length Encoding (RLE) scheme. Third, we transform the local context of
the symbols into a global context by the Incremental Frequency Count (IFC) stage. At the
end, we separately encode the run length data stream with an Entropy Coder (EC) and
the IFC symbols data stream with a layered Fountain Coding (FC). The proposed scheme
follows the Closed-Loop Iterative Doping (CLID) algorithm together with the multilevel
stage decoding Belief Propagation (BP) at the FC stage. Our algorithm offers
encouraging compression rates performance for large files.

1. Introduction

Much of the research effort in universal coding has gone into minimization of the
redundancy. Many times a compressed source needs to be transmitted over an unreliable
channel thereby making an interplay between source and channel coding essential. In this
correspondence, we propose an approach in the purely lossless text compression setting
based on rateless Fountain Codes and block-sorting transform (also called Burrows-
Wheeler transform [2]).

It has long been known that linear encoding can achieve the entropy rate of memoryless
sources [27]. Very recently, it was shown this also holds for arbitrary sources [17-21]. To
this end, the authors in [19-21] proposed fixed-length data compression algorithms based
on the Burrows-Wheeler Transform (BWT) and Low-Density Parity-Check Codes
(LDPC). Independently, in [17], an explicit scheme for variable-length data compression
for binary sources based on the BWT and the Fountain Codes was proposed. This scheme
was extended in [18] for non binary Markov sources with memory. In this paper, instead
of considering binary sources or non binary Markov sources, we focus on the problem of
data text compression. The BWT is the foundation of our algorithm. This transformation
maps the source output of stationary ergodic tree into a sequence that can be decomposed



asymptotically into piecewise independent and identically distributed i.i.d. segments [24].
The challenge is to find a good segmentation model in order to estimate probabilities
distribution at each segment of the BWT output. Compression systems studied in [18, 19,
21] follow adaptive segmentation via the Minimum-Description-Length (explained in
[27]). We use a different segmentation model, the uniform segmentation introduced in
[23].

In [18, 19, 20], to help reduce redundancy, the BWT, was followed by a Global Structure
Transformation (GST) [Ref] called Move-To-Front (MTF) transform. We refer the reader
to ([13, 30, 31]) for a detailed description of a number of possible GST. We adopt a new
GST called Incremental frequency Count (IFC) [16], which is paired with a Run Length
Encoding (RLE) stage between the BWT and the combination of an Entropy Coding (EC)
and a Fountain Coding (FC) as depicted in Figure 2.

The rest of the paper is as follows. Section 2 introduces the BWCA algorithm. Section 3
presents background material for Fountain Codes and algorithmic tools. Section 4
describes in details the FC block of our algorithm. Finally, we present simulation results in
Section 5 that show the superior performance of our algorithm for large files.

2. Burrows-Wheeler Compression Algorithm

The Burrows-Wheeler Compression Algorithm (BWCA) achieves strong compression
rates and a high throughput. In contrast to many other compression approaches, the
BWCA is a block oriented compression algorithm. A file to be compressed is first divided
into data blocks of a fixed size and all blocks are processed separately. The size of a block
is in the range of 1 to 10 MB in general. Since each block is processed separately, no
context information of the previous block is used in the following blocks. The BWCA
itself consists of several stages, which are performed sequentially. Each stage transforms
the symbols of an input buffer into symbols of an output buffer, which is used as the input
buffer for the next stage. A basic BWCA consists of three stages, one of which is the so
called Burrows-Wheeler Transformation (BWT) stage, the second is the Global Structure
Transformation (GST) stage, and the third part is the Entropy Coding (EC) stage as
pictured in Figure 1. An introduction into BWCAs is given by Fenwick in [1].
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Figure 1: The basic Burrows-Wheeler Compression Algorithm

The first stage — the BWT — performs a permutation of the input symbols, which is the
basis for the following stages [2]. The symbols are reordered according to their following
context. The output of the BWT stage contains many runs of repeated symbols. During
the last years, many fast and efficient algorithms for the BWT have been presented by
Larsson and Sadakane [3], Sadakane [4], Itoh and Tanaka [5], Kao [6] and Kéarkkdinen
and Sanders [7].

The second stage of the BWCA transforms the local structure of the BWT output stream



into an index stream with a global structure and is called a Global Structure
Transformation (GST). Some GST stages use a distance measurement between the
occurrence of same symbols like Inversion Frequencies (IF) from Arnavut and Magliveras
[8] or Distance Coding (DC) from Binder [9] but most GST stages use a more or less
simple recency ranking scheme similar to the list update algorithm [ 10]. The most common
approach is the Move To Front (MTF) stage, which was used in the original scheme by
Burrows and Wheeler [2] and which is very fast. Better compression rates are achieved by
the more complex Weighted Frequency Count (WFC) stage from Deorowicz [13] and the
Incremental Frequency Count (IFC) stage by Abel [16]. The MTF stage uses a list with
entries for each alphabet symbol. Each time, an input symbol is processed, the entry of that
symbol is moved to the front of the list and the former position of the entry inside the list
is output. This way, runs inside the input stream are transformed into a sequence of zeros
from the second symbol on. Symbols, which occur often within the near past, are
transformed into a sequence of small indices. A weak point of the MTF is the fact that the
entry of the symbol is always moved to the front no matter how seldom the symbol
appeared in the past. Even if the symbol appears the first time, it is moved to the front and
removes other symbols, which might be more frequent, from the top of the list. Some
MTF derivates try to extenuate this effect like the MTF-1 and MTF-2 approaches of
Balkenhol et al. [11] or a sticky version by Fenwick [12]. The WFC stage from Deorowicz
uses a different technique. For each alphabet symbol a counter is used, which represents
the frequency of the symbol in the near past. The counters are sorted in descending order
inside a list. Each time a symbol is processed, the current index of that symbol inside the
list is output, and the counters are recalculated and sorted [13]. The calculation of the
counters takes into account not only the absolute frequency but also the distance of the
occurrences. Occurrences of near symbols are weighted stronger than occurrences of
more distant symbols. By weighting the distances of the symbols, the WFC achieves
strong compression rates. The drawback is the high complexity by the recalculation of the
whole list for each symbol. The IFC stage from Abel tries to solve this problem by using a
counter list, in which only one counter is changed for each symbol processed, which
makes the IFC very fast [16]. The calculation of the counter takes several statistical
properties into account, one of which is the average index value of the near past. Symbols,
which occur inside a stable context, are weighted stronger than symbols inside a new
context. The compression rates of the [FC stage are in the range of the results of the WFC
stage, while the speed is similar to the MTF stage. In order to improve the compression
rates and the speed further, a Run Length Encoding (RLE) stage can be used. The RLE
cuts the run length of all runs to a fixed size. Especially large runs tend to hamper the
symbol probability inside the following stages. Balkenhol and Shtarkov name this
phenomenon "the pressure of runs" [15]. Most the time, the RLE stage is placed after the
GST stage. This implementation places the RLE stage it in front of the GST [16] as shown
in Figure 2. A typical RLE stage would place the length information of the runs in the
same output stream than the symbols. Here, all runs of size 2 or more are cut to 2 symbols
by an RLE-2 stage and the length information is transmitted into a separate run length data
stream and compressed separately by an arithmetic coder. This way, the context of the
main output stream is not disturbed by the length information.

The symbol data stream which is the main output of the RLE-2 stage is processed by the
GST stage and finally compressed into a bit stream. Some stages use Huffman coding like
BZIP2 [14], others variable length codes [12] and many use arithmetic coding [13, 16]. In
this correspondence, the output of the GST stage is compressed by a layered Fountain
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Coding (EC) and the run length data stream is compressed by an Entropy Coding (EC) as
depicted in Figure 2.

Input Output
data data
—» BWT » RLE-2 » GST » FC —

Run length data stream EC

Figure 2: The BWCA with an RLE-2 stage in front of the GST stage

3. Fountain codes and algorithmic tools

Fountain codes are rateless codes used to combat noise when the noise level is not
known. For example, these codes can be used over Binary Erasure Channels (BEC(p))
when the parameter p is unknown. LT codes are one of the first classes of Fountain codes
[31]. Raptor codes [32] are an extension of this family of codes with linear time encoding
and decoding.

In this work, we concentrate on LT codes. An LT code is a Fountain code with parameter
(k, D), where k is the length of input sequence and D = (D,, ..., Dy) denotes the
probability distribution that the value j is chosen. Without loss of generality, we assume
that the input sequence is binary.

Each coded bit is the exclusive-or of a subset of the input bits. The number of input bits
in this set is called the degree of the output. To generate an output bit, the encoder works
as follows. First, choose the degree j of the output bit from the degree distribution D.
Second, choose uniformly at random j distinct input bits as neighbors of the output bit.
The value of the output bit is the exclusive-or of the j input bits.

The performance of LT codes with respect to a given decoding algorithm is measured in
terms of the error rate as a function of the reception overhead. The overhead is the
number of output symbols that the decoder needs to collect in order to recover the input
symbols with high probability. The decoder collects output symbols and estimates for
each received output the amount of information in that symbol. When output symbols are
bit, this measure of information can be obtained from the Log-Likelihood Ratio (LLR) of
the received bit. The receiver stops collecting output bits as soon as the accumulated
information carried by the observed channel outputs exceeds (1 + g)k, where g is the
overhead associated with the LT codes, and k is the number of input symbols.

The decoding graph of length n of an LT code with parameters (k, D) is a bipartite graph
with k nodes on one side (called input nodes which correspond to the input symbols) and
n nodes on the other side (called output nodes which correspond to output symbols). The
decoder uses the Belief Propagation (BP) algorithm (see [33] ) to recover the input
symbols from the information contained in the output symbols.

To make the rest of the exposition easier, let formalize some notations. Consider a g-ary



(non binary alphabet) source S with source alphabet A= {0, ..., (q-1)}. Without loss of
generality, the alphabet cardinality q = 2°for some integer d. The probability distribution
of a source output X is assumed to be P (X = a) = P(a) for a €A .

We note B(a) = (by(a), ..., ba(a)) as the binary representation of the symbol a € A. We
assume that we can not observe source symbols, but instead, we sequentially their binary
representation b;(a). Let the binary representation B(c) = (bi(c), ..., b<(c), ..., ba(c)) of the
symbol c. ? is called the binary representation level of ¢ and b.(c) is the bit corresponding
to this level. For example 11101 is the binary representation of the symbol 23, with 1
being the bit corresponding to the first level and O the one corresponding to the fourth
level. Note that, for our data compression, d = 8.

We define the conditional marginal probability at level ? € {1, ..., d} as

pe(by, ..., bey) = p(b(X), = 11 by(X), = by, ..., bei(X) =b) =Q1/Q

with Q1 = Yie A, bl(x)= bl(x), ..., br-1(x) = br-1, br(x)= 1 P(x) and Q = Yie A bl(x)=bl(x), ..., br-1(x) = br-1 P(x) The
conditional entropy H (b.(x)/bi(Xx), ..., b-1(X)) is given by

Y AbL()=bI(x), .. br-100 = br-1 P(X) h( p<(by, ..., brp))

We note |Al as the cardinality of the source alphabet.

4. Fountain Coding (FC) algorithm

In this section, we present the Fountain Coding (FC) algorithm used in our compression
system. The FC block is a static algorithm which requires two passes, first the modeling
part to learn the distributions probabilities and the second pass is to accomplish the
encoding. we describe the modeling part and the coding part in detail.

4.1. Modeling

Let's assume that the source sequence x = (xi, ..., Xn) takes values on a given g-ary
alphabet.

If the sources are i.i.d. , we can simply estimate the distribution empirically and plug the
estimates into the formulas for entropy. If the sources are known piecewise i.i.d., the BWT
maps the source output of stationary ergodic tree into a sequence that can be decomposed
asymptotically into piecewise independent and identically distributed i.i.d. Segments [24]
as mentioned before. Source statistical modeling consists first of finding an efficient way
of segmenting the source, next estimating the first order distribution on each segment, and
thus we can estimate the empirical entropy of our source.

A source statistics model is given by the number of segments, the distinct transitions points
between segments and by the model segment distributions. The cost of such a statistical
model to represent x is the total number of bits needed to describe x. In [17, 18], to find
the most efficient piecewise i.i.d. source model, authors implemented a segment merging
algorithm (explained in [27]) via the Minimum description length principle that learn an
approximation to the source tree, identifying segments by their context. Cai et al. [23]
used different approaches to approximate the source tree and proposed two different
segmentation models. The first segmentation method called the adaptive segmentation
which estimates the location of the transitions of the the BWT output sequence based on
the empirical distribution of the symbols. This adaptive algorithm, first obtain rough
estimates for transition locations, and refines the locations of the estimates at the second
pass. The number and lengths of the segments are adapted to the realization from the



source, and this results in general in segmentation of different lengths. The second

approach to segment is the uniform segmentation , in which the BWT output is partitioned

such that each segment contains an equal number of symbols from the sequence according
to which segmentation is done. We denote this number of symbols by w(n). By taking

w(n) as D(\/n) , it has been established that, as n tends to oo, the entropy estimator

converges to the entropy rate with high probability for stationary ergodic sources. From

experimental results, it has been established that uniform segmentation method performs
almost as well as the the adaptive method.

We will follow the uniform segmentation. The advantage of using this segmentation is that

the encoder do not need to send the transitions points between segments to the decoder.

The decoder needs only to know the length of the first segment.

The source modeling algorithm works as follows:

« First apply the BWT on the sequence, following by a Run Length Encoding (RLE) .
The RLE stage replaces all runs of repeated symbols, which have a length of two or
more symbols, by a run consisting of exactly two symbols. The output of the RLE is
consisting of two separate data stream, the run symbols data stream (RSDT) and the
run length data stream (RLDT).

« Apply a Global Structure Transformation (GST) on the RSDT output.

« For each binary representation level ? from 1 to d,

« Partition the BWT-RSDT-GST output sequence into |?| = n/w(n) segments, where
w(n) = c-Vn. Where c. depends of the binary representation level. [ = {1, ..., |
7| }, where |[]] is the number of segments.

«  Estimate the first-order distribution within each segment. We estimate the number of
occurrences of symbol x in the kth segment by Ni(x), and the probability estimate of
symbol x in the kth segment by P(x, k), with
P(x, k) = (Nu(x) + [1)/ > yea(N(y) + |A|[T), with [1 >0
We defined p“«(bi, ..., b)) as the conditional marginal probability on the kth
segment, with P(x) = P(x, k) . The contribution to the conditional entropy estimate
of the empirical distribution in the kth segment is summarized by
logz q(k) = Yxe a(NW(x) + |A|[1)logz phe(by, ..., be)

«  Average the individual estimates. The estimate conditional entropy is
H (b«(X)/bi(X), ..., bri(X)) = (-1/n)Y ke rlogz q(k)

« The conditional probability Log Likelihood Ratio (LLR) associated to a symbol xj
the hth symbol of the sequence x is defined as
log((1 - p'<(bi (xn), ..., bra(xn)))/p +(b1 (X)), ..., bri(Xn)))

ey

versions of p*(b, ..., bei)

4.2. Coding

In this part, the compression and decompression algorithm is described. The main ideas
of our text compression scheme is the main building block of the source coding scheme
using Fountain Codes outlined before for binary sources and for non binary Markov
sources [17, 18] . Let ? = { Dy, ..., D} be a finite ensemble of LT codes distributions
optimized for the erasure channel [33]. After the GST and the modeling stages, the output
symbols is the sequence (yi, ..., yn). Let the sequence (b.(y)), ..., b«(y,)) be the binary
representation of the sequence (yi, ..., y.) at the ?th binary representation level (see
subsection A).



The coding strategy works as follows.
« For each binary representation level ? from 1 to d:

o Calculate from the binary symbols (b.(yi), ..., b:«(y,) a vector of binary
intermediate symbols (z.y, ..., Z «,) through a random linear invertible k * k matrix
G:
(Z+1s v Z ) = G (b<(y1), ..., De(yn)).

« For each distribution D of ?, mgsymbols (Yu+1)s .., Yasms)) 18 generated from (z.y, ...,
Z ) through encoding with an LT-code with parameters (n, D).

« A bipartite graph is set up between the nodes corresponding to (zi, ..., Z -,) and on
the other side the nodes corresponding to (b.(yi), ..., b«(y,) and the nodes
corresponding to (Ys1), ---» Y(nsms)) Obtained previously.

The BP algorithm is applied to this graph. The objective of the BP algorithm is to decode
the symbols (z.i, ..., Z ) using the full knowledge of the symbols (Yui1), ++e» Ynsms)) and
the absolute values of LLR values coming from the modeling part. During the BP-
algorithm, the Closed-Loop Iterative Doping (CLID) algorithm is applied: In a given
level ?, every f-th round of the iteration the, intermediate bit with smallest reliability is
marked, ans its LLR is set to +o0 or — colldepending on whether its value is O or 1. fis a
design parameter of the algorithm. The BP-decoding together with CLID is continued
until the intermediate bits satisfy all the parity check equations of the LT code. These m;
output symbols, together with the doped symbols obtained from the CLID algorithm
constitute the output of the compressor; m, should be as close as possible to n(H
(b-(y)/b1(y), ..., bri(y)) + 7), where ? is a small bias > 0. For each level, the encoder send
the code distribution (and a seed) of ? for which the number of doped symbols is smallest
, a seed for the matrix G, and LLR (its quantized version) values to the decoder using the
adaptive Huffman coding [28]. The decompression is achieved level by level in several
steps which closely mimic the compression steps. After receiving sequence (Yus+i) ---
Y(asms )), quantized values of LLR coming from the modeling part, the corresponding
doped bits, the decompression is applied to the level ? sequence (b-(y)), ..., b«(yya)), all the
sequences at lower levels 1 though ?-1 have been already recovered and the conditional
LLR needed by the BP decoder at level ? are known.

5. Experiments

We experimentally evaluated the compression rate of our scheme with Calgary Corpus and
large Canterbury Corpus files and compare it to leading text compression system IGZIP-
B, BZIP-9 and PPMDS5 (see [35]) in the following tables. IFOUNTOS is the approach
presented in this paper, where the GST stage is the IFC.

Tablel: Compression rates for the Calgary Corpus in bits per symbol

File Size IFOUNTO0S GZIP-B BZIP-9 PPMDS
Bib 111261 To fill 2.51 1.95 1.89
book1 768771 To fill 3.25 2.40 2.34

book2 610856 To fill 2.70 2.04 1.98




File Size IFOUNTO0S GZIP-B BZIP-9 PPMD5
Geo 102400 To fill 5.34 4.48 4.96
news 377109 To fill 3.06 2.51 242
objl 21504 To fill 3.84 3.87 3.70
obj2 246814 To fill 2.63 2.46 2.35
paperl 53161 To fill 2.79 2.46 2.36
paper2 82199 To fill 2.89 242 2.34
progc 39611 To fill 2.68 2.50 2.40
progl 71646 To fill 1.80 1.72 1.69
progp 49379 To fill 1.81 1.71 1.72
trans 93695 To fill 1.61 1.50 1.50
Avgerage 202186 To fill 2.84 2.46 2.43

Table2: Compression rates for the Large Canterbury Corpus in bits per symbol

File Size IFFO05 GZIP-B BZIP-9 PPMDS5
Bible.txt 4047392 To fill 2.24 2.13 1.99
E.coli 4638690 To fill 2.33 1.65 1.58
World192.txt 2473400 To fill 2.33 1.57 1.52
Average 3719828 To fill 2.30 1.79 1.70
Performance ...

These results can be considerably improved [34] by making a text preprocessing which
takes into consideration the special properties of textual data.
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